Creation of Colloidal Periodic Structure

Download Report

Transcript Creation of Colloidal Periodic Structure

Chapter 10. Laser Oscillation : Gain and Threshold

Detailed description of laser oscillation

10.2 Gain

Consider a quasi-monochromatic plane wave of frequency n propagating in the +z direction ; u n z A z+ D z z The rate at which electromagnetic energy passes through a plane of cross-sectional area A at z is

I

n (

z

)

A

The flux difference ; [

I

n (

z

 D

z

) 

I

n ]

A

  

z

(

I

n

A

) D

z

Nonlinear Optics Lab . Hanyang Univ.

This difference gives the rate at which electromagnetic energy leaves the volume A D z,    

t

(

u

n

u

n 

I

n /

c

A

D

z

)   

z

(

I

n 1

c

 

t I

n 

A

) D

z

 

z I

n  0 : Equation of continuity The change of electromagnetic energy due to the medium should be considered.

=> The rate of change of upper(lower)-state population density due to both absorption and stimulated emission.

(7.3.4a) => energy flux added to the field :  ( n )  (

N

2 

N

1 ) 

h

n   ( n )

I

n (

N

2 

N

1 )  1 

c

t

  

z I

n   ( n )

I

n (

N

2 

N

1 ) Nonlinear Optics Lab . Hanyang Univ.

(7.4.19) :  ( n )  (

h

n /

c

)

BS

( n ) 1 

c

t

  

z I

n 

h

n

c B

(

N

2 

N

1 )

S

( n )

I

n 

h

n

c

B

N

2 

g

2

g

1

N

1  

S

( n )

I

n   2 8 

A

 

N

2 

g

2

g

1

N

1  

S

( n )

I

n   ( n )  

N

2 

g

2

g

1

N

1  

I

n (no degeneracies) (degeneracies included) Define, gain coefficient, g( n )

g

( n )   2 8 

A

 

N

2 

g

2

g

1

N

1  

S

( n )   ( n )  

N

2 

g

2

g

1

N

1   Nonlinear Optics Lab . Hanyang Univ.

 

I

n 

z

 1

c

I

n 

t

g

( n )

I

n Temporal steady state :  

t

 0 

I

n (

z

) 

I

n ( 0 )

e g

( n )

z

dI

n 

g

( n )

I

n

dz

* g>0 when

N

2 

g g

2 1

N

1 * If

N

2 

g g

2 1

N

1 , : population inversion

N

2 

g

2

g

1

N

1  

g

2

g

1

g

( n )    2 8 

A g

2

g

1

N

1  

g

2

g

1

NS

( n )

N

 

N g

2

g

1  ( n )  

a

( n ) The gain coefficient is identical, except for its sign, to the absorption coefficient.

Nonlinear Optics Lab . Hanyang Univ.

10.3 Feedback

In practice, g~0.01 cm -1 if the length of active medium is 1 m.

=> A spontaneously emitted photon at one end of the active medium leads to a total of e 0.01 x 100 =e 1 =2.72 photons emerging at the other end.

=> The output of such a laser is obviously not very impressive.

=> Reflective mirrors at the ends of the active medium : Feedback.

10.4 Threshold

In a laser there is not only an increase in the number of cavity photons because of stimulated emission, but also a decrease because of loss effects.

(Loss effects : scattering, absorption, diffraction, output coupling) In order to sustain laser oscillation the stimulated amplification must be sufficient to overcome the losses.

Nonlinear Optics Lab . Hanyang Univ.

Absorption and scattering within the gain medium is quite small compared with the loss occurring at the mirrors of the laser. => Consider only the losses associated with the mirrors.

r

t

s

 1 where, r : reflection coefficient t : transmission coefficient s : fractional loss At the mirror at z=L and 0 ;

I

n (  ) (

L

) 

r

2

I

n (  ) (

L

)

I

n (  ) ( 0 ) 

r

1

I

n (  ) ( 0 ) Nonlinear Optics Lab . Hanyang Univ.

In steady state (or CW operation), g( n ) : constant

dI

n (  )

dz

g

( n )

I

n (  )

dI

n (  )

dz

 

g

( n )

I

n (  ) 

I

n (  ) (

z

) 

I

n (  ) ( 0 )

e g

( n )

z I

n (  ) (

z

) 

I

n (  ) (

L

)

e g

( n )(

L

z

) 

I

n ( 

I

n (  ) ( 0 ) 

r

1

I

n (  ) ( 0 ) 

r

1 [

e g

( n )

L I

n (  ) (

L

)] ( 0 ) 

r

1

e g

( n )

L

[

r

2

I

n (  ) (

L

)] 

r

1

r

2

e g

( n )

L

[

I

n (  ) ( 0 )

e g

( n )

L

]  [

r

1

r

2

e

2

g

( n )

L

]

I

n (  ) ( 0 ) 

I

n (  ) ( 0 ) 

r

1

r

2

e

2

gL

 1 Nonlinear Optics Lab . Hanyang Univ.

I

n (  ) ( 0 )

Threshold gain,

g t g t

 1 2

L

ln   1

r

1

r

2     1 2

L

ln(

r

1

r

2 ) * In the case of high reflectivity,

r

1

r

2  1 , and ln(1 -

x

)  -

x

g t

 1 2

L

( 1 

r

1

r

2 ) (high reflectivi ties,

r

1

r

2  0.9) * If the “distributed losses” (losses not associated with the mirrors) are included,

g t

  2 1

L

ln(

r

1

r

2 ) 

a

Nonlinear Optics Lab . Hanyang Univ.

Example) He-Ne laser, L=50 cm, r 1 =0.998, r 2 =0.980

g t

  1 2 ( 50 ) ln[( 0 .

998 )( 0 .

980 )]

cm

 1  2 .

2  10  4

cm

 1 Threshold population inversion ;

g

( n )   2

A

8 

n

2  

N

2 

g

2

g

1

N

1  

S

( n )  D

N t

  

N

2 

g

2

g

1

N

1    8  2 

n AS

2

g

( n

t

)  

g

( n

t

)

A

 1 .

4  10 6 sec  1

T

~ D 400

N t

K , M

Ne

 at   632.8

nm 20  ( 6328  10  8 amu ( 8  cm ) 2  n D  2 .

15  10 6 )( 2 .

2  10  4 cm  1 ) ( 1 .

4  10 6 sec  1    1  )( 6 .

3  10  10 T M 1 / 2    sec) MHz  1500 MHz  1 .

6  10 9 atoms / cm 3 D

N t N

 1 .

6  10 9 4 .

8  10 15  1 3  10  6 (very small !) Nonlinear Optics Lab . Hanyang Univ.

10.5 Rate Equations for Photons and Populations

Time-dependent phenomena ?

1) Gain term (stimulated emission or absorption)   

I

n ( 

z

 )  1

c

I

n ( 

t

 ) 

g

( n )

I

n (  ) 

I

n ( 

z

 )   

z

(

I

n (  ) 1

c

I

n ( 

t

 ) 

I

n (  ) 

g

)  1

c

 

t

( n )

I

n (  ) (

I

n (  ) 

I

n (  ) ) 

g

( n )(

I

n (  ) 

I

n (  ) )

d dt

(

I

n (  ) 

I

n (  ) ) 

cg

( n )(

I

n (  ) 

I

n (  ) ) *

l

l

: gain medium length, L : cavity length)

d dt

(

I

n (  ) 

I

n (  ) ) 

cl L g

( n )(

I

n (  ) 

I

n (  ) ) (10.5.4b)

I

n (  )

I

n (  ) Nonlinear Optics Lab . Hanyang Univ.

 

z

 0

2) Loss term (output coupling, absorption/scattering at the mirrors) By the output coupling, a fraction 1-r 1 r 2 of intensity is lost per round trip time 2L/c.

d dt

(

I

n (  ) 

I

n (  ) )  

c

2

L

( 1 

r

1

r

2 )(

I

n (  ) 

I

n (  ) ) (10.5.8)

I

n 

I

n (  ) 

I

n (  )

dI

n

dt

cl L g

( n )

I

n 

c

2

L

( 1 

r

1

r

2 )

I

n or photon number,

q

n 

I

n

dq

n

dt

cl L g

( n )

q

n 

c

2

L

( 1 

r

1

r

2 )

q

n 

cl L g

( n )

q

n 

cl L g t q

n Nonlinear Optics Lab . Hanyang Univ.

If g 1 =g 2 ,

dI

n

dt

cl L

 2 8 

A

(

N

2 

N

1 )

S

( n )

I

n 

c

2

L

( 1 

r

1

r

2 )

I

n 

cl

L

( n )(

N

2 

N

1 )

I

n 

c

2

L

( 1 

r

1

r

2 )

I

n Coupled equations for the light and the atoms in the laser cavity including pumping effect :

dN

1

dt dN

2    1

N

1 

AN

2 

g

( n )  n   (  2 

A

)

N

2 

g

( n )  n

dt d

 n

dt

cl L g

( n )  n 

K

c

2

L

( 1 

r

1

r

2 )  n Nonlinear Optics Lab . Hanyang Univ.

10.7 Three-Level Laser Scheme

1) Two-level laser scheme is not possible.

Neglecting  1 ,  2 in (7.3.2) =>

N

2 (  ) 

N

 

A

21  2   

N

2 : can’t achieve the population inversion 2) Three-level laser scheme (10.5.14) =>

dN

1

dt

 

PN

1   21

N

2    n (

N

2 

N

1 )

dN

2 

PN

1   21

N

2    n (

N

2 

N

1 )

dt d

 n

dt

cl L g

( n )  n 

c

2

L

( 1 

r

1

r

2 )  n P : pumping rate

dN

1

dt dN

2

dt

pumping  

PN

1 pumping 

dN

3

dt

pumping   

dN

1

dt

pumping 

PN

1 Nonlinear Optics Lab . Hanyang Univ.

for the steady-state operation i) Near threshold the number of cavity photons is small enough that stimulated emission may be omitted from Eq. (10.7.4) ii) Steady-state :  1 

N

2  0 

N

2 

P

 21

N

1 And, 

N

1 

N

2 

N T

: total population is conserved

N

1 

P

  21  21

N T N

2 

P P

  21

N T N

2 

N

1 

P P

   21  21

N T

# Positive (steady-state) population inversion :

P

  21 # Threshold pumping power : Pwr 

h

n 31

P N

1

V

h

n 31

P

 21

P

  21

N T P

min   21  1 2  21

N T h

n 31 Nonlinear Optics Lab . Hanyang Univ.

10.8 Four-Level Laser Scheme

Lower laser level is not the ground level : The depletion of the lower laser level obviously enhances the population inversion.

Population rate equations :

dN

0

dt

 

PN

0   10

N

1

dN

1

dt

   10

N

1   21

N

2   ( n )(

N

2 

N

1 )  n

dN

2

dt

PN

0   21

N

2   ( n )(

N

2 

N

1 )  n Nonlinear Optics Lab . Hanyang Univ.

N

0 

N

1 

N

2  constant 

N T

Steady-state solutions :

N N

0 1     10 10   21 21   10  21  10

P

  21

P

 10

P

   21

P

 21

P N

2   10  21   10  10

P P

  21

P N N T N T T

Population inversion :

N

2 

N

1   10

P

 (  10  21   10  21

P

) 

N T

 21

P

# Positive inversion :  10   21 lower level decays more rapidly than the upper level.

If  10   21 ,

P N

2 

N

1 

N

2 

P

P

 21

N T

Nonlinear Optics Lab . Hanyang Univ.

10.9 Comparison of Pumping Requirements for Three and Four-Level Lasers

1) Threshold pumping rate, P t (10.7.9) => (

P t

) three  level (10.8.7), (10.8.6) => (

P t

laser ) 

N N T

four  level

T

  D

N t

D

N t

laser   21

N T

D

N

t

D

N t

 21  (

P t

) four  level laser (

P t

) three  level laser 

N T

D

N t

 D

N t

 1 2) Threshold pumping power, (Pwr) t (10.7.15) => ( Pwr )

t V

three  level laser  1 2

h

n 31

N T

 21 ( Pwr )

t V

 four  level laser 

h

n 30 D

N t

 21  (( Pwr )

t

/

V

) four  level laser (( Pwr )

t

/

V

) three  level laser  2 n 30 D

N t

n 31

N T

Nonlinear Optics Lab . Hanyang Univ.

10.11 Small-Signal Gain and Saturation

For the three-level laser scheme, steady-state solution including the stimulated emission term ;

N

2 

N

1  (

P P

   21  21  )

N T

2   n  Gain coefficient (assuming g 1 =g 2 ),

g

( n )  

P

 ( n )(  21

P

 2   21  ( n )

N T

)  n  fn (  n  1 ) : A large photon number, and therefore a large stimulated emission rate, tends to equalize the populations and . In this case, the gain is said to be “saturated.”

N

1

N

2 As the cavity photon number increased, the stimulated absorption as well as the stimulated emission increased. => The lower level’s absorption rate is exactly equal to the upper level’s emission rate in the extreme limit.  The gain is zero.

Nonlinear Optics Lab . Hanyang Univ.

g

( n )    1  ( n )(

P P

   21  21 )

N T g

 0 n ( n / )  sat n 1  [ 2  1 ( n )  n /(

P

  21 )] Where we define, Small signal gain as

g

0 ( n )   ( n )(

P P

   21  21 )

N T

Saturation flux as  sat n 

P

2    21 ( n ) * The larger the decay rates, the larger the saturation flux.

* The saturation flux  Stimulated emission rate : The average of the upper- and lower-level decay rates.

Nonlinear Optics Lab . Hanyang Univ.

When the absorption lineshape is Lorentzian,  ( n )   ( n 21 ) ( n 21  n 1 ) 2 /( n 21 ) 2  1 * Small signal gain width : D n

g

 n 21 (10.11.3) =>

g

( n ) 

g

0 ( n 21 ) ( n 21  n ) 2 1 /( n 21 ) 2  1  (  n /  sat n 21 ) where,

g

0 ( n 21 )   ( n 21 )(

P P

   21  21 )

N T

: Line-center small signal gain * Power-broadened gain width : D n

g

 n 21  1   n  sat n 21 1 / 2 Nonlinear Optics Lab . Hanyang Univ.

 sat n 2 1  2

P

  21  ( n 21 )  4   2 2 n

A

21 (

P

  21 )  n 21 : Line-center saturation flux is directly proportional to the transition linewidth.

Nonlinear Optics Lab . Hanyang Univ.

10.12 Spatial Hole Burning

In most laser, we have standing waves rather than traveling waves.

=> Cavity standing wave field is the sum of two oppositely propagating traveling wave fields ;

E

(

z

,

t

)   

E

0 cos 

t

sin

kz

1 2

E

0 [sin(

E

 (

z

,

t

) 

kz

 

t

)

E

 (

z

,

t

)  sin(

kz

 

t

)] where,

E

 (

z

,

t

)  1 2

E

0 sin(

kz

 

t

) The time-averaged square of the electric field gives a field energy density :

h

n  ( n  )

c

  0 8

E

0 2 => Total photon flux,  n  2 [  ( n  )   ( n  ) ] sin 2

kz

I

n 

h

n  n  

I

n  2 [

I

n (  ) 

I

n (  ) ] sin 2

kz

Nonlinear Optics Lab . Hanyang Univ.

(10.11.3) =>

g

( n )  1  2 [(  ( n  ) 

g

 0 ( n  ( n ) ) ) /  sat n ] sin 2

kz

Nonlinear Optics Lab . Hanyang Univ.