QoS Presentation

Download Report

Transcript QoS Presentation

A QoS solution exploiting the MUSE QoS
concept
Andreas Foglar, IFX
July 13, 2006
Muse confidential
MUSE preferred QoS implementation
>
Based on MUSE QoS concepts 
•
>
Bottom-up solution in parallel to top-down work
New approach
•
•
•
Use time behaviour as differentiation of QoS classes
More precisely: impose per-node delay
Select discrete values
–
>
Elaborate based on these values
•
•
>
DiffServ only relative values
End-to-end delay
Resource reservation
Result: numerous benefits 
NOC 2006 QoS session — 2
[email protected]
MUSE QoS concept work key results
>
Per-flow admission control at border
>
All applications can have high priority
>
QoS measure depending on network tier
•
•
•
>
Optimise network for normal case
•
>
Access
Aggregation
Core
Not for exceptional case
Few QoS classes  4
•
•
Time is key parameter: delay, elastic, interactive, timely …
QoS solution shall have low complexity
NOC 2006 QoS session — 3
[email protected]
Application classification of 3GPP
NOC 2006 QoS session — 4
[email protected]
Application classification of ITU-T
NOC 2006 QoS session — 5
[email protected]
Choice of MUSE service classes
„Data integrity“
elastic
inelastic
noninteractive
interactive
noninteractive
„Timely arrival“
interactive
NOC 2006 QoS session — 6
Best effort class
Background class (3GPP)
Non-critical class (ITU)
Transactional class
Interactive class (3GPP)
Responsive class (ITU)
Streaming class
Streaming class (3GPP)
Timely class (ITU)
Real-time class
Conversational class (3GPP)
Interactive class (ITU)
[email protected]
QoS class dimensioning
>
4 QoS classes
•
>
One of them Best Effort
Highest performance for best QoS class
•
Challenging delay and loss values
–
•
•
>
Explore feasibility in MUSE
1 ms chosen for maximum node jitter
Successive QoS classes
•
>
Inspired by ATM
30ms / 900ms maximum node jitter
Packet loss rate very low (10-9)
•
•
Queue overflow losses negligible
Suitable for all applications
NOC 2006 QoS session — 7
[email protected]
Advantages of QOS solution
>
Low implementation effort
•
>
High performance
•
>
Including residential gateway
Simple resource reservation algorithms
•
>
Different billing accepted by the user
Allows node conformance testing
•
>
Guaranteed end-to-end delay bounds
End-to-end delay is noticeable
•
>
Strict priority scheduler
Independent of QoS class
High link usage
•
Statistical multiplexing gain
NOC 2006 QoS session — 8
[email protected]
Strict priority scheduler
1ms
1ms-class
Serving rate = R
highest
Classifier
Input
30ms
Serving rate = R  R1
900ms
900ms-class
Serving rate = R  R30  R1
Best Effort class
R1 = (1ms flow rates)
NOC 2006 QoS session — 9
Output
Link rate R
lowest
Threshold
Strict Priority Mux
30ms-class
Serving rate = R  R900  R30  R1
R30 = (30ms flow rates)
R900 = (900ms flow rates)
[email protected]
Maximum jitter definition
Probability density
Total area = 1
min
mean
Area = quantile (e.g. 10-7)
max
delay
Max: Jitter
NOC 2006 QoS session — 10
[email protected]
Jitter accumulation
Probability density
0,70
0,60
single Node
0,50
Two cascaded nodes
0,40
Three cascaded nodes
0,30
0,20
0,10
0,00
-0,10
0
1
2
3
4
5
6
7
8
Delay [ms]
NOC 2006 QoS session — 11
[email protected]
End-to-end delay values
Class
Max./mean
1ms Class
30ms Class
900ms Class
Max
Mean
Max
Mean
Max
Mean
100km
5 ms
3 ms
99 ms
19ms
2979ms
339ms
1000km
10ms
7 ms
103ms
23ms
2983ms
343ms
10000km
55ms
52ms
148ms
68ms
3028ms
388ms
Parameters:
• 10 Nodes
• Upstream 2 Mb/s
• Downstream 10 Mb/s
NOC 2006 QoS session — 12
[email protected]
End-to-end maximum delay
Class
Max./mean
1ms Class
30ms Class
900ms Class
Max
Mean
Max
Mean
Max
Mean
100km
5 ms
3 ms
99 ms
19ms
2979ms
339ms
1000km
10ms
7 ms
103ms
23ms
2983ms
343ms
10000km
55ms
52ms
148ms
68ms
3028ms
388ms
Parameters:
• 10 Nodes
• Upstream 2 Mb/s
• Downstream 10 Mb/s
NOC 2006 QoS session — 13
Streaming applications:
Max. delay in de-jitter buffer
[email protected]
End-to-end mean delay
Class
Max./mean
1ms Class
30ms Class
900ms Class
Max
Mean
Max
Mean
Max
Mean
100km
5 ms
3 ms
99 ms
19ms
2979ms
339ms
1000km
10ms
7 ms
103ms
23ms
2983ms
343ms
10000km
55ms
52ms
148ms
68ms
3028ms
388ms
Parameters:
• 10 Nodes
• Upstream 2 Mb/s
• Downstream 10 Mb/s
NOC 2006 QoS session — 14
Interactive applications:
Mean delay is experienced
[email protected]
End-to-end delay is noticeable
Delay
MUSE QoS classes
Best effort today
BE
EL
RT
LL
NOC 2006 QoS session — 15
[email protected]
Different billing accepted
Best effort today
MUSE QoS Classes
Cost
LL
RT
EL
BE
bandwidth
NOC 2006 QoS session — 16
bandwidth
[email protected]
Measurable GSB node behaviour
Packet traffic
generator
NOC 2006 QoS session — 17
Device under Test:
GSB node
Packet traffic
analyzer
[email protected]
Measurable GSB node behaviour
Packet traffic
generator
Device under Test:
GSB node
Packet traffic
analyzer
 GSB conforming node
NOC 2006 QoS session — 18
[email protected]
Resource admission control
Slow interfaces
Fast interfaces
•
<10Mb/s
•
>100Mb/s
•
First / last mile
•
Backhaul links
•
Deterministic model
•
Statistical model
•
Worst case consideration
NOC 2006 QoS session — 19
[email protected]
Deterministic resource control
Max. Jitter
Packet
flows
Serving rate
from
independent
Packet size
Sources
Pre-emption segment
53/65/1500 byte
Serving
Priority
Max. size Ethernet packet
Priority
1500 byte
NOC 2006 QoS session — 20
Multiplexer
[email protected]
Example deterministic admission control
Input
Link Rate [kb/s]
Sum of Low Latency rates [kb/s]
Sum of Real Time rates [kb/s]
Constants
Max.Jitter Low Latency [ms]
Max.Jitter Real Time [ms]
Max. Jitter Elastic [ms]
Segment size ATM [byte]
Segment size PTM [byte]
Packet size Low Latency [byte]
Packet size Real Time [byte]
Packet size Elastic [byte]
Low prio portion of Elastic queue
2000
200
1400
1
30
900
53
65
200
1500
9000
20%
Output
Sum of Elastic rates [kb/s]
400 must be >=0!
Results for ATM-TC
Max.number of Low Latency flows
Max.number of Real Time flows
Max.number of Elastic flows
1
5
4
Results for EFM-TC
Max.number of Low Latency flows
Max.number of Real Time flows
Max.number of Elastic flows
1
4
4
Results EFM-TC without pre-emption
0
Max.number of Low Latency flows
4
Max.number of Real Time flows
4
Max.number of Elastic flows
Queue size [kbyte]
0,2 Low Latency
7,5 Real Time
45,0 Elastic total
7,5 Elastic low prio threshold
0,2
6,0
45,0
7,5
Low Latency
Real Time
Elastic total
Elastic low prio threshold
0,0
6,0
45,0
7,5
Low Latency
Real Time
Elastic total
Elastic low prio threshold
In upstream direction: Residential Gateway
in downstream direction: DSL line card
NOC 2006 QoS session — 21
[email protected]
Deterministic admission control
Slow CAC
Bandwidth exceeded?
1ms class?
Y
Y
Number of 1ms flows exceeded?
30ms class?
Y
Number of 30ms flows exceeded?
900ms class?
NOC 2006 QoS session — 22
Y
Y
Number of 900ms flows exceeded?
Accept Flow
Y
Y
Deny Flow
[email protected]
Statistic admission control
Fast CAC
Bandwidth exceeded?
Accept Flow
NOC 2006 QoS session — 23
Y
Deny Flow
[email protected]
Statistic resource control result
Line rate
Maximum load %
Maximum Load
of Guaranteed traffic
100 Mb/s
81%
81 Mb/s
150 Mb/s
87%
131 Mb/s
600 Mb/s
96%
580 Mb/s
1 Gb/s
98%
980 Mb/s
Non-guaranteed traffic to use up to 100%.
NOC 2006 QoS session — 24
[email protected]
Policing option 1
1ms and 30ms class
Discarding Policer for
1ms or 30ms class
Excess traffic discarded
900ms class
Low and high priority
High priority
Tagging/Marking Policer for
900ms class
Excess traffic tagged
Low priority
Best Effort
NOC 2006 QoS session — 25
[email protected]
Policing option 2
1ms and 30ms class
Discarding Policer for
1ms or 30ms class
Excess traffic discarded
900ms class
Low and high priority
900ms class
High priority
Tagging/Marking Policer for
Elastic class
Excess traffic tagged
Best Effort
Best Effort
NOC 2006 QoS session — 26
[email protected]
Outlook – Chances of MUSE
>
Within MUSE
•
Optimise QoS concept and solution
–
•
Exploit broad and vertical consortium
–
•
Overcome DiffServ problem of relative QoS
No partner alone has a chance
Try out a challenging solution
–
Lab trials
– Support by PLANETS implementation
•
>
Establish standardisation strategy
After MUSE
•
Deployment in heterogeneous European networks
–
•
Proof of interoperability
Standardisation
NOC 2006 QoS session — 27
[email protected]
Thank you for your attention!
(Questions?)
NOC 2006 QoS session — 28
[email protected]
Backup
NOC 2006 QoS session — 29
[email protected]
M/D/1 Configuration
1
Multiplexer
2
Input rate Ri 3
:
n x Ri
n >> 
Serving rate Rs
Queue
Link Load L
:
:
Queue Length QL
n
NOC 2006 QoS session — 30
[email protected]
M/D/1 Results
120
100
Queue length max.
80
queue mean
queue 10e-11
queue 10e-7
60
queue 10e-3
40
20
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
Load
NOC 2006 QoS session — 31
[email protected]
Solution is close to Y.1541
NOC 2006 QoS session — 32
[email protected]