Vortrag Carsten - ELI-NP | Extreme Light Infrastructure

Download Report

Transcript Vortrag Carsten - ELI-NP | Extreme Light Infrastructure

Scientific Case of
ELI Nuclear Physics
D. Habs
LMU München • Fakultät f. Physik
Max-Planck-Institut f. Quantenoptik
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
1
Outline

Dietrich Habs
g beam + ELI high-power laser + electron beam

New nuclear physics with the g beam
•
Nuclear resonance fluorescence – radioactive waste measurement
•
Chaos in nuclear physics
•
Pygmy resonance
•
Parity-violating nuclear forces

Applications
•
New medical radioisotopes
•
Brilliant, intense positron beams
•
A new, brilliant neutron source
•
NRF + radioactive waste management

New nuclear physics with the APOLLON laser
•
From TNSA to light pressure acceleration of ions
•
Relativistic electron mirrors and g beams
•
Fission fusion and the N = 126 waiting point of the r-process

Fundamental physics = physics of the vacuum
•
Brilliant high-energy g production and pair creation in vacuum
•
Real part of the index of refraction: changed phase velocity
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
2
Major components of ELI-NP
• 2·10 PW
g beam stand-alone
• Emax = 13 MeV (19 MeV)
• 15 fs
• 12 kHz
• ~ 1/min
• ring-down cavity for photons
• 1024 W/cm2
• warm electron linac, 600 MeV
• 2.5×1015 V/m
• high brilliance (DEg/Eg ≥ 10–3)
• high flux (I = 1013 s–1)
APOLLON laser stand alone
APOLLON + e beam
• Eg ≈ 100–500 MeV
• ~ 1/min
• flux: Ig = 106 / 15 fs
• pair creation: 1024 W/cm2 + 500 MeV g
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
3
Layout of ELI-NP
2 ×APOLLON
Gamma beam +
Electron beam
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
4
Compton scattering
Linear + non-linear
e


Eg  n  2g e2 
n  harmonic number ;
Large a0 produces red shift ;
1  g e 
2
4g E
 a  e 20
mc
 E0
2
0
4g e E0
 recoil parameter ( small) ;
2
mc
a0 
eE
;
m0
E0  0
DEg D DE0 D0
Dg e
D

,

,
,
Eg

E0
0
ge

High resolution
Large g produces blue shift
1  cos 
→
(a0 < 1) good
dressed electron with
m*  m 1  a02  ma0
electron gains weight, recoils less,
and transfers less energy to final photon
large a → higher harmonics n
For large laser forces: 108 × higher gamma energies
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
5
g beams
and new nuclear physics
Backshifted Fermi gas model or
Constant temperature model
T.v.Egidy et al., Phys.Rev. C 80, 059310 (2010).
Gamma strength function
M. Guttormsen et al., Phys. Rev. C 63, 044313 (2001).
E1: milli Weisskopf units
M1: strong scissors mode ~ 1 W.U.
Integrated excitation cross section
  Eg2 ;   Eg3
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
6
High brilliance vs. high flux
Gamma beam
Best: high brilliance + high flux:
In 4-5 years ERLs with 100 mA will be available
(D. Bilderhack et al., Synchr. Rad. News 23, 32 (2010).
Nuclear spectroscopy:
• 10-3 BW (Barty: 10-4 possible) extremely important to explore individual
resonances, variable resolution best
• beam intensity has to be reduced to 109/s
new MHz rates of fast risetime nuclear detectors with flash ADCs
• high resolution reduces strong atomic background (20-30 b/atom)
In general one has to compare high brilliance and high flux for each experiment,
e.g. positrons: energy resolution of gamma beam is not important, but emittance
Positron moderation efficiency from 10-6 to 10-3.
Crystal monochromator:
Conversion of high flux to high resolution beam is less efficient, since crystal monochromator requires also good beam
divergence.
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
7
Double crystal monochromator
(GAMS, M. Jentschel (ILL))
Single crystal – resolution is defined by beam divergence:
h/L  TOO LARGE for eV resolution
2d sin( )  n
 n
hc
Eg
hc
Eg
~ 1 mrad
R( ) 
y
FWHM
Dietrich Habs

sin 2 A 1 y 2

1 y 2

hc
, A  g , Eg 
g
g
FWHM  2
hc
Eg
~ 10 nrad
Double Crystal Spectrometer:
• First Crystal defines beam axis with nrad
• Bragg Angle is measured @ second crystal

• Resolution is energy independent
ELI-NP workshop: The Way•Ahead,
Bucharest, Mar 10-12,
Resolution:
D2011
E/E ~ 10-6
8
Performance of GAMS
(GAMS, M. Jentschel (ILL))
Diffraction efficiency of a 2.5mm Si220 @ 0.8 MeV
Energy Resolution of a 2.5mm Si220 @ 1.1 MeV
4.5 eV @ 1.1 MeV
22% @ 0.8 MeV
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
9
GAMS monochromator
Starting with 1013 g/s and 10-3 bandwidth
we get for a reflectivity per crystal of 10%:
Dietrich Habs
Bandwidth
Intensity
10-5
107 g/s
10-6
105 g/s
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
10
Nano-focusing refractive lens
For hard g-rays (200 keV) refractive lenses have been successfully tested.
Concave lenses:
n 1    i
Extension to MeV energies for new brilliant g beams.
Focal length
f 
R
2 N
re g
2

  real refractiveindex 106  108 
R  radius of g beam
2

N  number of nano- lenses 1000- 5000
Z
A
re  classical electronradius
g  wave length of g beam  c 2 Eg
  density
Test of d theory for higher energies: M. Jentschel et al., ILL proposal 3-03-731
Test of nano-lens array at MEGa-ray facility
C.G. Schroer et al., Phys. Rev. Lett. 94, 054802 (2005).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
11
Nuclear res. fluorescence
Extension up to 4 MeV:
 239Pu and 235U
 Minor actinides: 237Np, 241Am, 243Am, 244Cm, 247Cm
137Cs, 129I, 99Tc
 Fission fragments:
T. Hayakawa et al., NIM A 261, 695 (2010).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
12
Regular motion and chaos
in nuclear physics
Compound nucleus (N. Bohr, Nature, 1936)
50 levels with the same mean level spacing
Wigner distribution:
P( s ) 
Porter-Thomas distribution:
P( y ) 

2
s  exp   s 2 / 2
1
exp  y / 2 
2y
Random matrix theory = chaos
Generic spectra
H.A. Weidenmüller et al., Rev. Mod. Phys. 81, 539 (2009).
G.M. Mitchell et al., arXiv:1001.2422v1 (2010).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
13
Nuclear resonances
Pygmy and giant resonance
Average values
and
fluctuating quantities
With GAMS monochromator we can study individual resonances at PDR.
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
14
Parity violating NN-force (I)
Z 
0

MZ c
 0.02 fm extremely short-range
p 

7
 GF   nuc  F  U 0  10
M

GF = 1.166×10–5/GeV2 ; nuc ≈ fm–3 = nuclear density
Very weak contribution
pF/M = nuclear velocity at the Fermi level ≈ 0.3 (v/c) ;
pF 
297 MeV
; r0  1.3 fm
r0 F
U0 = 50 MeV = strength of nucleon-nucleus interaction
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
15
Parity-violating NN-force (II)
We need tricks to enhance PNC-effects in nuclei:
a)
b)
Suppression of regular transitions
Use close-lying parity doublets
~       

VP NC
DE
Aim: measure different components of PNC-NN interaction
Status: present coupling constants are inconsistent due to insufficient data
→
reliable experiments with new more brilliant, intense g beam are required!
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
accuracy.
16
New experiments (II)
Basic doublet parameters of 20Ne
Present data:
11270 keV: g0 = 0.716 eV
11262.3 keV: g0 ≈ 11 eV
DE = (7.7 ± 5.7) keV
g cascades from separate experiments.
We can switch linear polarization shot after shot and can
compare 11270 keV and 11262.3 keV difference, and can
compensate for small drift of Ge detector.
→ DE to better than 0.7 keV.
We can compare E1 and M1 excitation from shot to shot
and determine g0 values to better than 0.1 eV.
20Ne
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
17
Applications
Med. radioisotopes
195mPt labeled chemo
•
117mSn Auger electrons
•
225Ra/225Ac α chains
•
44Ti/44Sc generator
•
γ-PET
•
Matched pairs
diagnostics + therapy
Radioactive waste manag.
•
•
Nuclear resonance fluorescence
Radioactive waste management
•
Better use of reactor fuel elements
Dietrich Habs
Brilliant positron beam
•
Positron-induced Auger spectroscopy (PAES)
•
•
Scanning microbeams
Fast coincident Doppler broadened
spectroscopy (DDBS)
g-beams
Thermal neutron beams
•
Neutron scattering: structure + dynamics
•
Small samples,
extreme conditions
•
Neutron reflectrometry
•
Small angle scattering
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
18
Positron source (I)
NEPOMUC at reactor FRM II + ELI-NP
Ig = 9∙1015/s
Ie+ = 9·108 s–1
B = 4∙105/(mm2 mrad2 eV s)
mod = 3∙10-6
C. Hugenschmidt et al., NIM A 554, 384 (2005).
Ig = 1013/s
Ie+ = 3·109 s–1
B = 2∙106/(mm2 mrad2 eV s)
mod = 2∙10-3
Dt = 1-2 ps (pulsed)
Switchable polarization
W-foil
e+
g
Self-moderation, negative electron affinity
e+ range = 100 mm
C. Hugenschmidt, K. Schreckenbach, D. Habs, P. Thirolf, Appl. Phys. B, submitted
arXiv:1103.0513 v1 [nucl-ex]
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
19
Medical radioisotopes (I)
Production of 50 new medical isotopes with gamma beams.
D.Habs, U.Koester, Appl. Phys. B
DOI: 10.1007/S00340-010-4278-1
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
20
195mPt
Labeled chemotherapy and therapy against resistances
Chemotherapy:
Treatment of tumors before and after other cancer therapies
many (80%) cytotoxic Pt compounds: cisplatin, carbonplatin
Aim:
label chemotherapy and study anti-tumor efficiency
application: intravenously, intraarterially, orally
temperature (hyperthermic treatment)
non-responding patients: identified in advance (30%)
treat multi-resistant cancer cells with therapeutic dose of 195mPt
Importance: in Germany (~ 80 mio. people) we have:
1.5 mio. chemotherapies/year
average cost: 20 k€ = 30 bill. €/year
Improvements:
Dietrich Habs
Identify optimum gateway state; cross section ↑ 104
verify labeled chemotherapy with 195mPt from reactor
(but 13000 b destruction cross section)
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
21
Medical radioisotopes (II)
44Ti
46Ti(g,2n)44Ti
generator
Dietrich Habs
(60 a)
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
22
44Ti/44Sc
generator (I)
Long-lived generator for hospital,
Continuous production of 44Sc
2∙511 keV + 1157 keV
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
23
44Ti/44Sc
g-PET
generator (II)
Measure momentum of Compton electron in strongly pixeled
detectors
Determine direction and position of 1157 keV γ
3D reconstruction of decaying 44Sc
2D reconstruction of collinear line with PET
PET = Positron Emission Tomography
Better resolution, less dose
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
24
Nuclear resonance fluorescence
Applications
• Radioactive waste management
- study 238U/235U and dominant fission fragments in barrels
- isotope-specific identification of location and quantity (735 keV transition in 235U), 239Pu, fast detection without destruction of
sample
• Nuclear material detection (homeland security)
- scan containers in harbors for nuclear material and explosives
- detect specific small isotopic amounts (like 210Po)
• Burn-up of nuclear fuel rods
- fuel elements are frequently changed in position to obtain a homogeneous burn-up
- measuring the final 235U, 238U content may allow to use fuel elements 10% longer
- more nuclear energy without additional radioactive waste
• Medical applications: no activity
- NRF does not appear very important compared to PET
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
25
Notch-detectors
for nuclear resonance fluorescence
g-ray
beam dump
Narrow g beam
Isotope
sample
isotope
second scatterer
Hole burning,
ultra-high
resolution
NRF
• Tomography
• 235U/238U ratio
Dietrich Habs
change in
scattering rate
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
26
Brilliances
of g-rays and neutron beams
ILL reactor, Grenoble
1023 / (mm2 mrad2 s 0.1%BW)
Dietrich Habs
102 / (mm2 mrad2 s 0.1%BW)
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
27
2-step neutron production
Neutron halo isomer, dissociation of n-halo isomer
D. Habs et al., arXiv-1008.5324 [nucl-ex] (2010), accepted by Appl. Phys. B
DOI: 10.1007/S00340-010-4276-3
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
28
Neutron halo wave function
Weakly bound neutron tunnels far out and lives for ns.
wave function
potential
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
29
Neutron experiments
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
30
New neutron beam
Pulsed, brilliant
Big advance in neutron scattering:
 structure of biological samples, heterostructures, new functional materials
 only available as very small samples  micro neutron beam
 H and light materials  strong scattering  functionality of biomaterials
 collective states, e.g. magnons, phonons – relaxation, diffusion
 short pulses  dynamics, time dependence
Many new possibilities in:
 biology
 hard condensed matter
 geoscience
 nuclear physics
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
31
Laser acceleration schemes
Former schemes
Ion acceleration
TNSA
(target-normal sheath acceleration)
• Low conversion efficiency
• Huge lasers are required
Eion  I Laser
S.C. Wilks et al., Phys. Plasmas 8, 542 (2001).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
32
New Acceleration Mechanism
Radiation Pressure Acceleration (RPA)
Optimum ion acceleration
aL  
ions
D  4nm
Optimum electron acceleration
aL    2
electrons
for
Normalized areal electron density:
Normalized vector potential:
aL  5
D  0.65nm for aL  5
 ne  D 
   dimensionl ess
n
 c   
  ne  D  / nc     
aL2  I  2 /1.38 1018Wcm2 mm2 = dimensionless
O. Klimo et al.,
Phys. Rev. ST AB 11, 031301 (2008).
S.G. Rykovanov et al.,
New J. Phys. 10, 113005 (2008).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
33
Radiation pressure acceleration
(RPA)
Cold compression of electron sheet.
Rectified dipole field between electrons and ions.
Neutral bunch of ions + electrons accelerated.
Solid-state density: 1024 e cm–3
Classical bunches: 108 e cm–3
Eion
 I Laser
Very
efficient!
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
34
Fission-fusion reaction
very neutron-rich nuclei
H, C, O + Th → FL + FH fission fragments in target
232Th + 232Th → fission of beam in F + F
L
H
Reaction of radioactive short-lived light fission fragments of beam +
Radioactive short-lived light fission fragments of the target
a) Fission
b) Fusion:
Dietrich Habs
FL + FL →
≈ 18580
nuclei close to N=126 waiting point
232
FL + FH → Th
old nuclei
FH + FH → unstable
AZ
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
35
Chart of the Nuclides
r-process and waiting points
Fission-fusion with very dense beams
Radioactive targets + radioactive beam
• Superheavies: Z = 110, T1/2 = 109 a ?
• recycling of fission fragments ?
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
36
Experimental setup
neutron-rich nuclei in fission-fusion
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
37
Pair creation
Re  e 

e 2E 2
m2 


exp  
4 3
eE


Nonperturbative tunneling process
For E << ES exponentially strong suppression
m2
ES 
e
   ES
exp 
E

 1.3 1018
V
W
15 V
; I S  ES2  4.3 1029
;
E

5

10
m
cm2
m

1000
  10

Dynamically assisted pair creation:
E 

exp    2 S   10350
E 

R. Schützhold et al., Phys. Rev. Lett. 101, 130404 (2008)
G.V. Dunne et al., Phys. Rev. D 80, 111301(R) (2009)
High field + high g energy:
 8 ES me c 2 
  101
exp 
 3 E E 
g 

N.B. Narozhny, Zh. Eksp. Teo. Fiz. 54, 676 (1968).
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
38
Hard g + pair production
N. Elkina + H. Ruhl
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
39
Phase contrast imaging
Phase velocity of probe laser in polarized vacuum
Optical intense probe laser, deflection angle

 
,   phase shift
2 y
focusing
K. Homma, D. Habs, T. Tajima, arXiv:1006.4533
[quant-ph] (2010)
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
40
ELI-NP coupling-mass limit per shot
SHG
Log g/M [1/GeV]
200J
15fs
QCD axion (Dark matter)
OPG
200J
15fs
200J
15fs(induce)
OPG
200J 1.5ns
200J 1.5ns(induce)
Gravitational
Coupling(Dark Energy)
2011/3/11@Bucharest for
Dietrich Habs
ELI-NP workshop
Kensuke Homma
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
log m [eV]
41
41
ELI-NP the way ahead
Next steps
 Build a nano-structured target for a positron source at 2 MeV
together with C. Hugenschmidt
 Build a nano-structured g-ray lens at 1 MeV
together with M. Jentschel
 Build a “flying” GAMS crystal spectrometer monochromator
together with M. Jentschel
 Test production of new medical radioisotope 195mPt at ~ 2 MeV
together with U. Koester
 Test MHz g detectors + electronics
together with K. Sonnabend and D. Savran
Flying start of ELI-NP g beam at MEGa-ray
Dietrich Habs
ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, 2011
42