Transcript Document
Plasmid-mediated quinolone resistance. Dr. Jose Manuel RODRÍGUEZ-MARTÍNEZ Department of Microbiology, Faculty of Medicine, University of Seville E-mail : [email protected] EPIDEMIOLOGY OF THE RESISTANCE E. coli FQs I + R 2002 E. coli FQs I + R 2012 Resistance to FQ in E. coli (hemocultures) in Europe (EARSS, www.earss.rivm.nl) MECHANISM OF ACTION (1) Functions of Type II Topoisomerases DNA gyrase : • Replication : . Initiation of replication . Progression of fork of replication . Decatenation (+) • Transcription : . Progression of RNA polimerase • Recombination and reparation of DNA Topoisomerase IV : • Replication : . Decatenation (+++) REPLICATION TOPO IV GYRASE TRANSCRIPTION MECHANISM OF ACTION (2) First and second targets (1) Gram negative Bacteria : First Target = DNA gyrase Gram positive Bacteria : First Target = Topoisomerase IV MECHANISM OF ACTION (3) Complexs of DNA-Topoisomerase-Quinolone Inhibition of religation (Bacteriostatic) (Covalent Fixation) Fragmentation of chromosome (Bactericidal) Drlica & Zhao, MMBR 1997 IN VITRO ACTIVITY (2) FQ & Gram negative bacteria Specie E. coli Others enterobacterial Aeromonas spp. Acinetobacter spp. P. aeruginosa S. maltophilia H. influenzae Neisseria spp. C. jejuni B. fragilis group Prevotella spp. MIC50 (µg/ml) : OFX NOR CIP LEV MOX GAT TRO 0,06 0,03-0,12 <0,01 0,25 1 2 0,03 <0,01 0,5 2 - 0,06 0,06-0,12 <0,01 4 0,5 1 0,06 <0,01 0,5 - 0,01 0,01-0,03 <0,01 0,25 0,25 2-4 0,01 <0,01 0,25 4-8 4 0,03 0,03-0,06 <0,01 0,25 0,5 1 0,01 <0,01 0,25 2 1 0,06 0,03-0,12 <0,01 0,03 1-2 0,5 0,01 <0,01 0,12 1 0,5 0,03 0,01-0,12 <0,01 0,12 1 0,5-1 <0,01 <0,01 0,12 0,5 0,5 <0,01 <0,01-0,25 <0,01 0,03 0,5 0,5 <0,01 <0,01 0,5 0,5 Le Noc et al., JAC 1993 ; Cunha et al., JAC 1997 ; Fernandez-Roblas et al., JAC 2000 ; Milatovic et al., AAC 2000 ; McCloskey et al., JAC 2000 ; Fung-Tomc et al., JAC 2000 ; Barry et al., AAC 2001 ; Sheng et al., JMII 2001 ; Hoban et al., DMID 2001 ; Christiansen et al., AAC 2004 Cip-S if MIC 1 mg/L (according to CLSI) Wild-type population ECOFF www.eucast.org Low level resistance? Decreased susceptibility? High level resistance ECOFF S R www.eucast.org MECHANISMS OF RESISTANCE Chromosomal-mediated Resistance: MAIN • Decreasement of affinity on the target by modification of intracellular targets (DNA gyrase, Topo IV) • Decreasement of intracellular accumulation of FQ by deficient penetration and/or efflux pumps www.scq.ubc.ca Plasmid-mediated Resistance: EMERGENT • Protection of the target (proteins Qnr, PRP), 1998 • Enzymatic Inactivation (acétyltransferase AAC(6’)-Ib-cr), 2005 • Efflux pumps (QepA, OqxAB), 2007 NB : All the mechanisms can be associated +++ Target Modification (1) Mutations in the genes coding for type II topoisomerases: . DNA gyrase (gyrA, gyrB) . Topoisomerase IV (parC, parE) Substitutions at short conserved region named « Quinolone ResistanceDetermining Regions » (QRDR) Resistance multi-step (first level mutants, second level mutants…) with: . 1 mutation facilitating a second and etc . level of resistance with the number of mutations . First level mutation in the main target: 1st Mutant 2nd Mutant 3rd Mutant Gram - Bacteria gyrA parC gyrA Gram + Bacteria parC gyrA parC CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE QRDR of GyrA in E. coli (1) 67 106 GyrA (875 AA) C N QRDR (Yoshida et al., AAC 1990) Weigel et al., AAC 1998 CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE Association of mutations and resistance to quinolones in E. coli GyrA WT GyrB ParC 83 87 447 80 84 Ser Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Leu Asp Tyr Asn Asn Asn Asn Tyr Asn Asn Asn Tyr Lys Glu - Ser Arg Ile Arg Ile Arg Ile Ile Ile Ile Ile Glu Val Lys Lys Lys Lys Val Lys MIC Nal (µg/ml) MIC CIP (µg/ml) 2-4 128-256 >2000 512 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 >2000 0,007-0,25 0,25 1 2 4 4 8 8 8 16 16 32 32 64 64 128 Vila et al., AAC 1994 et 1996 CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE Phenotype of resistance in E. coli (1) NAL PEF CIP NAL WT PEF CIP 1 mutation into GyrA L’antibiogramme 2006 CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE Phenotype of resistance in E. coli (2) NAL PEF NAL CIP 1 mutation into GyrA + 1 into ParC PEF CIP 2 mutations into GyrA + 1 into ParC L’antibiogramme 2006 CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE Interplays between resistance mechanisms in GNB Outer membrane permeability Target modifications Active efflux CHROMOSOMAL-MEDIATED QUINOLONE RESISTANCE Target protection: plasmid mediated quinolone resistance. Types of qnr • qnrA in K. pneumoniae. 1998. – qnrA1, A2, A3, etc • qnrS (homology 59%) in S. flexneri. 2005. – qnrS1, qnrS2, qnrS3, etc • qnrB (40%) in K. pneumoniae. 2006. – qnrB1, B2, B3, etc • • • • qnrC in P. mirabilis. 2008. qnrD (48%) in S. enterica. 2008. qnrVC in V. cholerae. 2008. ………………….. Gram +: potential reservoir of Qnr-like proteins. QNR Proteins • • • • QnrA, QnrB, QnrC, QnrD, QnrS, QnrVC… Pentapeptide repeat proteins Expressed by different bacteria Protect DNA-gyrase ad topoisomerase IV from quinolone attack. • Origin: chromosome of different environmental and aquatic bacteria. PLASMID-MEDIATED QUINOLONE RESISTANCE QnrA QnrB QnrS QnrC QnrD Prevalence = 1-5% Epidemiology of Qnr Mainly described among Enterobacteriaceae: Bacterial species E. coli K. pneumoniae K. oxytoca E. cloacae E. aerogenes E. sakazakii C. freundii C. koseri C. werkmanii S. marcescens P. mirabilis M .morganii S. enterica Shigella spp. Aeromomnas spp. Pseudomonas spp. Campylobacter spp. a Prevalence of qnr-like genesa: qnrA qnrB qnrS +++ ++ ++ ++++ ++++ +++ + + ++++ ++++ +++ + + + + ++ + + + + + + + ++ ++ ++++ + + + - No. of published qnr-like positive isolates: -, 0; +, 1-10; ++, 10-50; +++, 50-100; ++++, >100. Prevalence: qnrA ~ 1.5% qnrB ~ 4.5% qnrS ~ 2.5% Cattoir & Nordmann, CMC 2009 qnrC1 identified from a single Proteus mirabilis isolate in China (Wang et al., AAC 2009) qnrD1 identified from four Salmonella isolates in China (Cavaco et al., AAC 2009) PLASMID-MEDIATED QUINOLONE RESISTANCE Association with -lactamases Frequent association with ESBLs: - qnrA : SHV-2/7/12/92, CTX-M-1/9/14/15/24, VEB-1, PER-1 - qnrB : TEM-52, SHV-12/30, CTX-M-3/12/14/15/24, VEB-1 - qnrS : TEM-52, SHV-2/5/12, CTX-M-1/9/14/15/24 Association with several plasmid-mediated cephalosporinases (AmpC): - qnrA : FOX-5 (pMG252), CMY-2 - qnrB : CMY-1, DHA-1 (qnrB4) Worrying association with carbapenemases (class A and B): - qnrA : IMP-4, KPC-3 - qnrB : IMP-8, KPC-2, KPC-3 - qnrS : IMP-8, VIM-1 Resistencia y Fitness bacteriano Puntos de corte CLSI: Se requieren 4 mecanismos de resistencia para obtener cepas resistentes: 3 cromosómicos y 1 plasmídico. Sin PMQR ATCC 25922 ATCC ΔmarR ATCC S83L ATCC S83L ΔmarR ATCC S83L S80R ATCC S83L S80R ΔmarR ATCC S83L D87N ATCC S83L D87N ΔmarR ATCC S83L D87N S80R ATCC S83L D87N S80R ΔmarR QnrA1 QnrB1 QnrC QnrD1 QnrS1 QepA2 Puntos de corte EUCAST: Se requieren 3 mecanismos de resistencia para obtener cepas resistentes. Sin PMQR ATCC S83L ATCC S83L ΔmarR ATCC S83L S80R ATCC S83L S80R ΔmarR ATCC S83L D87N ATCC S83L D87N ΔmarR ATCC S83L D87N S80R ATCC S83L D87N S80R ΔmarR QnrB1 QnrC QnrD1 0,03 ATCC 25922 ATCC ΔmarR QnrA1 0,016 QnrS1 QepA2 0,016 Serum or tissue drug concentration Cmax MPC Mutant selection window MIC Time post-administration In the presence of qnrA1, mutations in gyrA y parC are easily induced causing high level fluoroquinolone resistance. qnrA1 Coste Biológico de la Resistencia qnrS1 Correlación entre fitness in vitro e in vivo Resistencia Coste biológico Changes in qnr prevalence and fluoroquinolone resistance. Strahilkevitz et al. AAC 2007 The presence of qnrA1 in E. coli from a patient with a UTI (treated with norfloxacin) preceeds the emergence of changes in Ser83Leu and Asp87Asn, (GyrA gyrase subunit) and Ser80Ile (ParC topoisomerase IV subunit) MICs of ciprofloxacin increased from 0.5 to >32 mg/l PK/PD parameters of fluorquinolones related to in vivo activity (AUC)/MIC: ≥ 25-30 (immunocompetent) (AUC)/MIC: ≥ 100-125 (immunodeppressed) Cmax/MIC: >8 Effect of qnrA, qnrB and qnrS on the in vivo activity of fluoroquinolones. Dominguez-Herrera et al. ECCMID 2010 Strain E. coli ATCC 25922 (pBK-CMV) E. coli ATCC 25922 (pBK-Qnr A) E. coli ATCC 25922 (pBK-Qnr B) E. coli ATCC 25922 (pBK-Qnr S) Log10 CFU / g of lung Mortality Positive blood (Mean ± SD) (%) cultures (%) Control 9.37 ± 0.48 100 100 CPX 1.87a ± 2.07 53.33a 0a LVX 1.67a ± 2.50 28.57a 0a Control 9.40 ± 0.25 100 92.86 CPX 5.71ab ± 0.86 53.33a 26.67a LVX 5.71ac ± 0.75 71.43a 21.40a Control 8.84 ± 0.75 100 100 CPX 4.95ab ± 1.71 57.14a 35.71ab LVX 4.54ac ± 1.49 50a 28.57ac Control 8.36 ± 1.26 93.33 93.33 CPX 5.38ab ± 1.75 42.86a 28.57ab LVX 4.99ac ± 1.63 35.71a 21.43a Group Conclusion The presence of the qnrA, qnrB or qnrS genes in Escherichia coli strains reduces the therapeutic efficacy of ciprofloxacin and levofloxacin in a murine experimental pneumonia model. Clinical consequences of Qnr? • MPC > peak serum mutant selection Therapeutic failure? • Effect of breakpoint guidelines. • Increases clinical failures in experimental model. Plasmid-Mediated Active efflux • QepA (qepA1 y qepA2) • OqxAB (Chromosome of K. pneumoniae!) • Moderate increase in MIC values Yamane et al., AAC 2007 ; Périchon et al., AAC 2007 Hansen LH, AAC 2004; Kim HB, AAC 2009 Enzimatic inactivation: AAC(6’)-Ib-cr Two substitutions at the aac(6’)-Ib gene: Trp102Arg and Asp179Tyr N-acetylation at the amino radical of the piperacynil group (It does not compromise activty against aminoglycosides) It affects ciprofloxacin, norfloxacin,… (but not other quinolones) Moderate increase in MIC values It favors the emergence of more resistant mutants Robicsek A et al, Nature Med 2005 aac-(6´)-Ib-cr prevalence and fluorquinolone resistance Warburg et al. AAC 2009 Low Level Antimicrobial Resistance Conclusions • Caused by multiple mechanism encoded by chromosomal or plasmid genes. Phenotypic methods are not reliable for detecting many of these mechanisms • LLR increases the level of resistance due to high-level resistance mechanisms, and ensures bacterial viability to allow acqusition of additional resistance mechanisms • Overexpression of LLR or coexpression of several LLR mechanisms may translate into clinical resistance, as defined by usual breakpoints • PK/PD data indicate that even the moderate changes in MIC caused by LLR affect the clinical efficacy of quinolones Líneas de Investigación • Bases Moleculares de la Resistencia a Antimicrobianos y Fijación en Poblaciones Bacterianas • Sensibilización de Bacterias Resistentes Mediante Búsqueda de Nuevas Dianas Terapéuticas