Transcript Slide 1
Advanced sol-gel coating for corrosion protective of aerospace aluminium alloys John Colreavy, Brendan Duffy, Rajath Varma CREST, Dublin Institute of Technology Summary • Sol-Gel: History, Chemistry, Properties • Common Silane Precursors • Current Research in Protective Coatings • CREST Research –Incorporating Organometallic Precursors –Incorporating Amine Chemistry –Novel Inhibitor Incorporation Sol-Gel: History 1846 1864 1939 1951 1959 1964 1965 1974 1981 1984 1984 1989 1989 1992 1996 1996 2000 Silica glass via silica acid esters Coined the term “sol gel” First patent for coatings (SiO2 and TiO2) Silica sols patented Car rearview mirror (TiO2-SiO2-TiO2). Antireflection coatings (Mirogard) Ormosil clad UV-fiber optics ZrO2-SiO2 refractory fiber Introduction of Regal coated-abrasive product Inorganic/organic hybrids (Ormosils) Organic-inorganic hybrids Window-glass antireflection coatings (Amiran) and coatings for computer monitors (Conturan) Protective coatings for steel Automotive water-repellent coatings UV-shielding automotive coatings Inorganic/organic hybrids (ZrO2-SiO2) for metal alloys Glass encapsulated UV absorbers for sunscreen lotions Ebelmen Graham Schott Glaswerke Dupont Deutsche Spezialglas AG Deutsche Spezialglas AG Schott Glaswerke 3M 3M Schmidt Hebrew University Schott Glaswerke Nisshin Steel Central Glass Asahi Glass Boeing Sol Gel Technologies Ltd. (Israel) Sol-Gel: Chemistry Sol-Gel: Chemistry • Main reactions of hydrolysis-polycondensation which take place with organically modified alkoxides are the following: R' Si (OR)3 (RO)2 (RO)2 R' Si OH R' Si OH [H+]/[OH-] H2O R' RO Si (OR)2 R' HO Si (OR)2 (RO)2 [H+]/[OH-] R' Si OH ROH (1) (RO)2 R' R' Si O Si (OR)2 ROH (2) (RO)2 R' R' Si O Si (OR)2 H2O (3) [H+]/[OH-] Sol-Gel: Properties Sol-Gel: Properties P. Judenstein and C. Sanchez, J. Mater. Chem., 1996, 6, 511 Common Silane Precursors C. Sanchez et al., J. Mater. Chem., 2005, 15, 3559–3592 Current Research in Protective Coatings • Within the aerospace industry, sol-gel chemistry has attracted considerable attention: – Boeing has developed an environmentally compliant sol-gel product called Boegel® based on epoxysilane and zirconium chemistry, to replace carcinogenic chromium conversion coatings as an adhesion promoter on aluminium alloys. – EADS (Airbus (Fr)), in 2007, was granted a patent for a sol-gel coating based on epoxysilane and zirconium chemistry for corrosion protection of Aluminium. – EADS (Munich) has used this patented chemistry to study the performance of sol-gel coatings on leading edges against rain erosion, as part of the FP6 Project “NAPOLYDE” – EADS (Munich) is a leading partner in an FP6 Project “MULTIPROTECT”, which is investigating sol-gels as alternatives to heavy metal coatings. Protective Coating Technology • ORMOCERS® developed by FhG ISC Zheludkevich et al. J. Mater. Chem., 2005, 15, 5099–5111 Aerospace Coatings: Boe-Gel System OCH3 O H2C CH CH2 O CH2 CH2 CH2 Si Zirconium Alkoxide OCH3 US Patents: OCH3 5,869,141 Organic Resin NH2 O Si Sol-Gel Film 30-200nm Si O Si O O Zr O O O O O Zr Zr Si O O Si Zr Si Zr Si Zr O O 6,077,885 O O O 5,939,197 Zr O Condensation O Zr Zr O HO Si O O Zr Si Zr Si O Si O Si O O Si Metal Substrate Si O O NH2 O Zr Zr NH2 O O O NH2 Hydrolysis NH2 • Issue: Protective coating but no corrosion inhibition Incorporating Organometallic Precursors Methacrylic Acid (MAAH) Acetic Acid (AcOH) 2,2’ Bipyridyl (BP) Acetylacetone (Acac) PrO Zr PrO HO OPr OPr Zr (OPr)4 O PrO C + Isobutyric Acid (IBA) =O =C =H = Zr =N R + PrO O Acid ligand R Zr O Hydrolysable Protected Zr(OPr)2(ligand) Neutral Salt Spray Study ( 1 week) MAPTMS/Zr (MAAH) MAPTMS/Zr (Acac) MAPTMS/Zr (AcOH) MAPTMS/Zr (BP) Corrosion protection: MAPTMS/Zr (IBA) MAPTMS ( 48 Hrs) MAAH=AcOH>IBA>Acac > BP > no Zr Incorporating Amine Chemistry PrO O OPr Zr + OPr PrO O PrO Zr PrO O O b-Diketone (acac) NH2 NH2 Zr PrO HO OPr PrO C + OPr O PrO NH2 Zr PrO O Amine rich carboxylic acid O NH2 Surface Topography 1m 1m MAPTMS MAPTMS/Zr/acac MAPTMS/Zr/DABA Thermal Stability 30 Heatflow (mW) 25 20 15 10 0 -5 195 130 5 230 MAPTMS /Zr/DABA MAPTMS /Zr/acac MAPTMS -10 50 100 150 200 Temperature(deg cel) 250 300 EIS Data 8 7 6 2 Log|Z| (Ohm cm ) 2 Log|Z| (Ohm )cm MAPTMS MAPTMS/Zr/acac MAPTMS/Zr/DABA 7 Non-Porous 6 5 4 Porous 3 5 4 3 2 2 1 1 0 0 -100 -100 -90 -90 -80 -80 -70 -70 Phase angle(deg) Phase angle(deg) 8 MAPTMS MAPTMS/Zr/acac MAPTMS/Zr/DABA -60 -50 -40 -30 -60 -50 -40 -30 -20 -20 -10 -10 0 0 -2 -1 0 1 2 3 Log Frequency (Hz) 4 5 -2 -1 0 1 2 3 Log Frequency (Hz) 4 5 29Si-NMR Species Notation T 0 T 1 R-Si-(OMe)OH2 T 2 R-Si-(OH)3 T 3 R-Si-(OMe)3 R-Si-(OMe)2OH Notation Chemical shift (ppm, ±0.1) No. of OH groups -42.3 0 -41.3 0 -40.6 0 T 0 0 -40.1 0 R-Si-(OMe)2-OSi T10 -49.9 R-Si-(OMe)OH-OSi T11 -50.5 R-Si-(OH)2-OSi T12 -49.3 R-Si-(OMe)-(OSi)2 -59.1 R-Si-(OH)-(OSi)2 T21 -58.5 R-Si(OSi)3 T30 -67.4 No. of Si–O-Si linkages R' MeO Si OMe OMe = T 0 0 Following Sol-Gel formation with 29Si-NMR • The products of condensation are found at values more negative than those of the alkoxides. T 0 0 R' MeO Si OMe OMe T12 R' HO Si O Si OH 1 2 T R' HO Si O Si O Si T30 R' Si O Si O Si O Si ppm -40 -50 Condensation -60 -70 Following Sol-Gel formation with 29Si-NMR • Example: MAPTMS/Zr/acac T1 T1 MAPTMS+Zr-acac pre-hydrolysed MAPTMS T0 0 -20 2 0 T2 T3 1 T2 0 1 0 -40 -60 -80 -100 ppm • The presence of the Zr speeds up the condensation process 29Si NMR Analysis 1 T2 T2 T0 sol gel-MAPTMS T0 0 1 T3 3-D Structure poorly forms 0 0 precursor-MAPTMS 0 -20 3-D Structure strongly forms -40 -60 -80 -100 ppm 0 MAPTMS/Zr/acac T1 2 T1 T2 MAPTMS+Zr-acac pre-hydrolysed MAPTMS T0 0 -20 0 T2 T3 1 0 MAPTMS/Zr/DABA 1 T1 MAPTMS+Zr-DABA T1 0 pre-hydrolysed MAPTMS -40 -60 ppm -80 -100 0 -20 T0 1 T2 T 0 3 2 0 -40 -60 ppm -80 -100 Salt Spray Exposure Salt spray results plots for various sol gel coatings: (A) Bare AA2024 after 24 Hours (B) MAPTMS for 48 hrs and (C) MAPTMS/Zr/acac (D) MAPTMS/Zr/DABA for 1 week Current Strategy in CREST • Sol-gel coatings showing most promise involve Zirconium • Improved pH resistance • Functionalised surface improving topcoat adhesion • Inhibitors work best at lower concentrations • Novelty: Incorporation Route – Patent Filed Nov 2007 • Inhibitors are bound in the network and dispersed O uniformly Zirconia nanoparticles -O-Si-OR Novel Inhibitor Incorporation (Patent Filed) 1.0 Silane + Zirconium Coating + Inhibitor 0.5 E (Volts) Silane + Zirconium Coating 0 Blank Al 2024 -0.5 Silane Coating -1.0 -1.5 -12 10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 I (Amps/cm2) -5 10 -4 10 -3 10 -2 10 -1 10 Comparison of Organic Inhibitors (0.3% w/w) EIS (Bode Plots) 1,2,4-Triazole Novel Inhibitor 107 0 hr 24 hrs 48 hrs 72 hrs 105 104 103 |Z| |Z| 106 102 101 10-2 10-1 100 101 102 103 104 105 106 108 107 106 105 104 103 102 101 10-2 0 hr, 24 hrs, 48 hrs,72 hrs 10-1 100 Frequency (Hz) 1 10 0 -2 10-2 10-1-1 0 10 100 1 10 101 0 hr 24 hrs 48 hrs 72 hrs 2 10 102 3 10 103 4 10 104 107 -200 106 -150 105 -100 104 -50 103 2 10 0 1 10 50 -2 10 10-2 5 10 105 6 10 106 104 105 106 4 10 104 5 10 105 6 10 106 0 hr 24 hrs 0 48 hr,hrs 24 hrs, 48 hrs,72 hrs 72 hrs -1 10 10-1 0 10 100 1 10 101 2 10 102 3 10 103 Frequency (Hz) Frequency Frequency (Hz) (Hz) -100 -100 0 hr a -75 103 Imidazole |Z| theta |Z| theta 0 hr 24 hrs 48 hrs 72 hrs 102 Frequency (Hz) Benzotriazole -100 107 106 -755 10 104 -50 103 -252 10 101 -75 0 hr 24 hrs Novel Inhibitor Route • Novel organic corrosion inhibitor for aluminium • Highly reducible species, based on Nitrogen chemistry –Eo = -1.2V • Compatible with sol-gel chemistry and can be bound at specific sites • pH triggered release with selective binding at copper rich intermetallics • Inhibition of the electrochemical cell and corrosion process Sample Testing Surface Treatment Primer Coat Topcoat None – just Al None Aerospace Alodine 1200 Cr Primer BSAA Cr-Free Primer CAAA Dualion Dualion Dualion (UV Active) Dualion (UV Active) Total: 6 5 1 Typical Thickness (<5 m) 25 m Top Coat 20 m Cr-Free Primer 3 m Dualion Aluminium x 350 100 m Salt Spray Data 1st Treatment 2nd Treatment Failure (Hrs) 1st Treatment 2nd Treatment Failure (Hrs) Alodine None 300 Sol-Gels None 800 Alodine Sol-Gels 800 Sol-Gels Cr-free primer 800 Alodine Cr-free primer 1800 Sol-Gels Cr-free primer* 1500 Alodine Cr primer 2000 Sol-Gels Cr primer 2000 1st Treatment 2nd Treatment Failure (Hrs) 1st Treatment 2nd Treatment Failure (Hrs) BSAA None 800 CAA None 1800 BSAA Sol-Gels 1500 CAA Sol-Gels 1300 BSAA Cr-free primer 2000 CAA Cr-free primer 2000 BSAA Cr primer 2000 CAA Cr primer 2000 1st Treatment 2nd Treatment Failure (Hrs) None None 300 None Sol-Gels 800 None Cr-free primer 300 None Cr primer 500 * - Precommercial Product Comparative Thicknesses of Coatings Topcoat Topcoat Topcoat Topcoat Topcoat Cr(VI) Primer Cr(VI) Primer Cr(VI) Free Primer Dualion Akzo Cr(VI) Free Cr(VI) Alodine 1200 Dualion AA 2024-T3 AA 2024-T3 2,000 Hrs 500 Hrs AA 2024-T3 300 Hrs AA 2024-T3 800 Hrs AA 2024-T3 1,500 Hrs Conclusion • Sol-Gel chemistry is a viable option for protecting aerospace aluminium alloys • Sol-gels can be designed to combine the properties of both a conversion coating and a primer • Novel organic inhibitors can be engineered into such coatings thereby avoided heavy metal alternatives Thank you for your attention!