Transcript Document
DNA-Templated Synthesis: Principles of Evolution in Organic Chemistry 1 R4 NH2 O N O CO2H R4' O N HN R3' O O R4 H R5 NH O O O O O N N O HN R3' O O O R2 S HN R1' HN R6' R1 NH2 N R3 NH O O HN R2' O2N O NO2 R3 NH H EDC, Sulfo-NHS, NaBH3CN O O O O HO N R1 N H R6 NH R2 SH O O Ph Ph O P HN R5' O O O R5 NH2 H HN R1' HN R2' R6 NH O N H R4' HN R5' O HN R6' O 2 Ph P Ph Ph R1 Ph P H Ph Ph R2 O Ph P H Ph Ph R3 O O R H One solution R R3 R2 R1 3 Introduction to DTS Organic Reactions in DTS Fundamental reactions, distance dependence and independence New, synthetically useful architectures Example of a Small Molecule Synthesis Synthetic strategies, linkers, purification Towards the Multistep Synthesis of Small Molecule Libraries Conclusions 4 Strategies to Control Reactivity The chemist’s approach to controlling reactivity O O H 2N O OH N H O OPG + S O Ph O Starting materials mM – M concentration N H OH N H S One possible product 5 Strategies to Control Reactivity The chemist’s approach to controlling reactivity O O H 2N O OPG OH N H O + O S Ph O Starting materials mM – M concentration N H OH N H S One possible product Nature’s approach to controlling reactivity: O O NH2 OH HO C 2 H2N O Ph CO2H NH2 OH O O SH HO2C CO2H nM - M concentration Many reactants in one solution O Macromoleculetemplated synthesis N H OH N H S Selective product formation 6 Synthetic Strategies The chemist’s approach to active molecule discovery: O N N O NH OEt N N NH OEt N Starting material N S O O Product Data: Keq, ee, IC50, … 7 Synthetic Strategies The chemist’s approach to active molecule discovery: O N N O N N NH OEt NH OEt N N S O O Starting material Product Data: Keq, ee, IC50, … Nature’s approach to active molecule discovery: O O Ph DNA RNA Protein Selection, Amplification, Diversification O N H OH N H S 8 The Basics of DNA-Templated Synthesis (DTS) Reactant for DTS O oligonucleotide HN O N O reactive group linker General Reaction Scheme O O HN O N HN O O N "H+" O SH Annealing SH Coupling O HN N O S O 9 Selection and Amplification O O NHH S O HO O Protein Ph N H O S H2N O H N Protein NH HN H NH O HN H NHH O NH S O Amplification PCR O N H H N O O NH Ph SMe DNA sequencing or PAGE Identity of the active molecule 10 Polymerase Chain Reaction (PCR) Sample Denature 94oC, 30 s 5’ 3’ 3’ 5’ Anneal primers 55oC, 60 s Stop 4o C Extension 75oC, 30 s 5’ 3’ 3’ 5’ Taq polymerase 11 Synthesis of Products Unrelated to the DNA Backbone 1,4-conjugate addition to carbonyls O O HN O N HN O O N O SH S Peptide Coupling NH2 O H N 73% O DMT-MM Or EDC / sulfo-NHS OH Heck O O HN NH O O N H N O I 54% Na2PdCl4 O N H N O O Gartner, Z. J., Kanan, M. W., Liu, D. R. Angew. Chem. Int. Ed. 2002, 41, 1796 Gartner, Z.J., Liu, D.R. J. Am. Chem. Soc. 2001, 123, 6961. 12 Sequence Specificity and Distance Independence O Sequence Specificity O N NH O H I H N NH SH O 2 O O N O HS NH O A single base mismatch in the 10-base reagent oligonucleotide slows the reaction down by a factor of 200 13 Sequence Specificity and Distance Independence O Distance Independence HN HN O H NR 3 O O HN H R2 O N R1 O N H • Limited ability for diversification • Complicated substrate identification Coding Region for R1, R2 and R3 14 Sequence Specificity and Distance Independence O Distance Independence H NR HN HN O 3 O O HN H R2 O N R1 O N H • Limited ability for diversification • Complicated substrate identification Coding Region for R1, R2 and R3 O HN Coding Region for R2 HN O Coding Region for R3 H NR 3 O O HN H R2 O N R1 O N H Coding Region for R1 •Considerably simplifies the identification of active molecules •Necessary to anneal further along the template 15 Distance Independence HS O N X-X-X-X-X-X-X-X-X-X-5’ O NH T-G-G-T-A-C-G-A-A-T-T-C-G-A-C-T-C-G-G-G….3’ O n bases •As n is varied from 1 to 30, the rate does not significantly change for Heck couplings, peptide couplings and nucleophilic addition. •Unfortunately, not all reactions turned out to be distance independent. 16 Distance-Dependent Reactions 1,3-dipolar cycloaddition O N Me O N HN 53% O Me NH N OO O O N O H Reductive amination H NH2 H N O N H H N NaBH3CN O Nitro-Michael 81% O O N 42% O pH 8.5 buffer NH O NO2 O O N N H O NO2 Gartner, Z. J., Kanan, M. W., Liu, D. R. Angew. Chem. Int. Ed. 2002, 41, 1796 17 Kinetics of Distance Independance A k1 A k-1 k2 B A B B In distance independent reactions, k2 >> k1 B A n bases As n increases, k2 decreases. As long as k2 > k1, reaction rate remains distance independent. 18 Kinetics of Distance Dependance A k1 A k-1 k2 B A B B If k2 k1 the coupling reaction becomes rate-determining B A Since k2 decreases as n increases, the rate of the reaction becomes dependent on the number of bases between the reagents. n bases 19 The Architecture: Overcoming Distance-Dependence A B A B Gartner, Z. J., Grubina, R., Calderone, C. T., Liu, D. R. Angew. Chem. Int. Ed. 2003, 42, 1370. 20 The Architecture: Overcoming Distance-Dependence A B A B 10-20 base loop A B 10-base coding region 4-5 constant bases at the reactive end •Coding-region annealing is the main driving force. •The constant region forms a secondary structure once the coding region is annealed. Gartner, Z. J., Grubina, R., Calderone, C. T., Liu, D. R. Angew. Chem. Int. Ed. 2003, 42, 1370. 21 Small Molecule Synthesis: Retrosynthetic Analysis O O NH HN O O N O O HN O N NH H O H O O Ph Ph P O Wittig O O N O OH O HN HN O peptide coupling O O H O O HN O NH HO O OH NH2 NH HN O OH NH HO oxazolidine formation O OH NH HN O O O Ph Ph P NH O O NH HO O O OH HN 22 Multistep Synthesis of Small Molecules HO OH HN NH2 HO O O OH HN O O NH2 DMT-MM OMe ClN N N N OMe HO O DMT-MM HN O O NH Li, X., Gartner, Z.J., Tse, B.N., Liu, D.R., J. Am. Chem. Soc. 2004, 126, 5090. 23 Multistep Synthesis of Small Molecules HO OH HN NH2 HO O O OH HN O O NH2 DMT-MM OMe OMe N N O N N N O OMe R R' N N O HO OMe O N R' NH2 O R OMe OH R N H HO HN N N OMe O O NH 24 Multistep Synthesis of Small Molecules HO OH HN NH2 HO O O OH HN O O NH2 DMT-MM A C X B HO HN O O NH 25 Strategic Linkers Scarless Linker O HN O O O S reagent H B: O O Ph N H O "H+" NH Ph template H2N pH 11.8 template NH O >95% reagent Gartner, Z.J., Kanan, M.W., Liu, D.R. J. Am. Chem. Soc. 2002, 124, 10304. + NH2 26 Strategic Linkers Scarless Linker O HN O O O O S reagent Ph O H N H NH O Ph template H2N O pH 11.8 + >95% B: template NH NH2 reagent Useful Scar Linker O reagent HN OH H N OH O O O template NH Ph H N H NaIO4 >95% O O template NH Ph O + H HN reagent Gartner, Z.J., Kanan, M.W., Liu, D.R. J. Am. Chem. Soc. 2002, 124, 10304. O 27 Strategic Linkers Autocleaving Linker O O O HN Ph P Ph reagent template NH H template R O O O R NH H + >95% O reagent HN Gartner, Z.J., Kanan, M.W., Liu, D.R. J. Am. Chem. Soc. 2002, 124, 10304. Ph P Ph O 28 Wittig Olefination O O HN Ph P Ph reagent O O NH H template reagent HN Ph P Ph O O O R R HN O template O template R O NH H O reagent + O reagent HN HN Ph NH P O Ph O O R template Ph P Ph O 29 Multistep Synthesis of Small Molecules O 1) HN NH2 O O S O O 2 OH HO O N H O OH H2N O O O NH 3 1 DMT-MM NH2 2) Cleavage buffer pH = 11.8 ? Purification 30 Multistep Synthesis of Small Molecules O O S O 1) HN NH2 O OH HO O O 2 N H O OH O H2N O O NH 3 1 DMT-MM 2) Cleavage buffer pH = 11.8 Product Purification O HN H NHH O O NH S O O S HN O HO O O N H O OH Avidin Avidin biotin R O biotin 31 Purification of DNA-Templated Reactions Purification with scarless or useful scar linker A B A B A B A B B A B Bead-bound avidin Biotin 32 Purification of DNA-Templated Reactions Purification with scarless or useful scar linker A B A B A B A B B A Wash with 4M guanidinium chloride B B B A 33 Purification of DNA-Templated Reactions Purification with scarless or useful scar linker A B A B A B A B B A Wash with 4M guanidinium chloride B B A B B A 34 Purification of DNA-Templated Reactions Purification with autocleaving linkers A B A B A B A B B A Wash with 4M guanidinium chloride B B A + A 35 Multistep Synthesis of Small Molecules 1) O HN NH2 O O S O OH HO O O O OH N H O O 2 1 H2N O NH 3 DMT-MM 2) Capture with Avidin beads Wash with 4M guanidinium chloride 3) Cleavage buffer pH = 11.8 HN OH O O HO HN OMe ClN N N N OMe O DMT-MM O H NH O O HN HO O OH OH H 2N NH HN 5 HN 4 O O H O O 36 Multistep Synthesis of Small Molecules "H+" O NH O O "H+" O HN HO O O H NH OH OH H 2N NH HN O HN O O H OH HO N HN NH O O O HN OH HO NH O O N "H+" O HN O OH HO HO NH 5 O O O NH N H O HN O HN OH HO O NH 6 37 Multistep Synthesis of Small Molecules O O O O NH N H O HN OH HO OH O O OH HN HN O O P Ph Ph HN NH N H O HN 6 H N HO HN O NH O O Ph Ph P O HN 8 HN OH O HN O P Ph Ph O N O OH O OH O 1) DMT-MM 2) Avidin beads 33% overall from 3 O OH O HN OH O NH HN O HO 7 O O O HN 38 Multistep Synthesis of Small Molecules O HN O H O O O O Ph Ph P O Ph Ph P OH O O N O OH O H N O HN H N HO HN HN O O NaIO4 O N O OH O HN HN 9 8 HN O pH 8.5 O N NH H O H O O Ph Ph P O O N O OH O HN O HN 39 Multistep Synthesis of Small Molecules O O N NH H O O O HN O O NH HN Ph P Ph Self-elution N OHO O H O HN O O N O O HN O O 10 7% overall yield Li, X., Gartner, Z.J., Tse, B.N., Liu, D.R., J. Am. Chem. Soc. 2004, 126, 5090. 40 Introduction to DTS Organic Reactions in DTS Fundamental reactions, distance dependence and independence New, synthetically useful architectures Example of a Small Molecule Synthesis Synthetic strategies, linkers, purification Towards the Synthesis of Small Molecule Libraries Conclusions 41 Synthesis of Libraries of Macrocycles O HN HN O H NR 3 O O HN H R2 O N R1 O N H •A library of 65 macrocycles was successfully synthesized and screened in one solution. •Each synthetic step carried out in one solution was the same for all templates, only with different reagents. •Would it be possible to perform branching syntheses with several different reaction classes occurring at the same time in the same solution? Gartner, Z.J., Tse, B.N., Grubina, R., Doyon, J.B., Snyder, T.M., Liu, D.R. Science, 2004, 305, 1601. 42 One-pot, controlled reaction of cross-reactive reagents NH NH O N O NH2 O N O O HN O O Ph Ph P CO2H NH HN O O SH NH NH N O O O H NH O O O2 N O N O O N O O HN NH O O O S HN O N NO2 NH HN O O Calderone, C.T., Puckett, J.W., Gartner, Z.J., Liu, D.R. Angew. Chem. Int. Ed. Engl. 2002, 41, 4104. 43 One-pot, controlled reaction of cross-reactive reagents NH2 NH NH2 O NH O N O O Ph Ph P HN O SH O O NO2 O EDC, Sulfo-NHS, NaBH3CN HN NH N NH NH O O O NH2 O N O O HN H NH NH O NH O O N O HN O NH O O S O H N O2 N O HO O O NH CO2H NH O O HN O H N HN O O Calderone, C.T., Puckett, J.W., Gartner, Z.J., Liu, D.R. Angew. Chem. Int. Ed. Engl. 2002, 41, 4104. 44 Diversification by Branching Reaction Pathways O NH2 H N N H O NH2 O O O N H OH O H N O N H NH2 OH NH2 O N H O O NH N S O O N H NH2 NHAc OH S H N O O O N H NHAc S H N O NH2 NH NH2 45 Diversification by Branching Reaction Pathways O NH HO O NH2 NH2 N H 11 NH2 O O NH HO N H SStBu NH2 NH2 SStBu 12 O HO NAc O NH2 HN N H O Ar2P NH2 NHAc 13 HN O Ar2P Calderone, C., Liu, D.R. Angew. Chem. Int. Ed. 2005, ASAP. 46 Diversification by Branching Reaction Pathways O HO NH2 N H O NH O H N N H 11 NH2 O 14 O S O H NH2 N H O O OH N N H SStBu 12 O O S 15 O N H NH2 O H S N H O 13 16 HN OH O O O Ar2P Calderone, C., Liu, D.R. Angew. Chem. Int. Ed. 2005, ASAP. NHAc S O O NH 47 Diversification by Branching Reaction Pathways O O N H H N NH2 8.3% 14 N H O 3.6% 15 O O OH 17 N H NH2 H N NH2 O O O OH 18 OH S OH NHAc S O O 16 NH OH O N H 16 O NH2 N H N O N H O H N H OMe HN NH2 14 N H N H O H N O O O OH O O NH HO NHAc S O O NH 48 Diversification by Branching Reaction Pathways O N H O H N N H NH2 O O N H O H N NH2 O O O 18 14 O N H 15 O HN 2% S NH2 O N H 19 O O O OH NH N S NH2 OH NHAc S O O 16 NH OH O N H 16 OH N O N H OH NH2 H N N H NH2 O NH2 N H 17 14 O O H N NHAc S O O NH 49 Diversification by Branching Reaction Pathways O N H O H N N H NH2 O N H NH2 H N N H NH2 NH2 O O O 18 14 O N H 15 O O S S N H 1.7% NH O NH NH NH2 NHAc NH S H N NH2 O I S O O O OH NHAc NH 0.8% OH S O 20 O N O NH2 O O O 16 HN O O 19 OH 16 N H O N H O N H OH N NHAc OH 17 O H N NH2 N H O 14 O O H N NHAc N H 21 OH S H N O NH2 50 Ordered Multistep Synthesis in a Single Solution Ar P Ph Ph R1 Ar P H Ph Ph R2 O Ar P H Ph Ph R3 O O H One solution R3 R2 R1 51 Ordered Multistep Synthesis in a Single Solution O O O O H N H N H H N N H O N H H N N H NH2 O O O One solution O Ar Ph P Ph O N H O N H biocytin Ar Ph P Ph O N H N H O O H O Ar Ph P Ph O N H N H H N H O O H N H O 52 Ordered Multistep Synthesis in a Single Solution O O Ar Ph P Ph 22 O N H N H biocytin Ar Ph P Ph O N H 23 N H O O Ar Ph P Ph H H N H O R2 R1 25 O O N H N H O H N H O 24 4oC R3 Ph O Ph P Ar R3 H O Ph Ar Ar Ph P O P Ph Ph H R2 R1 Snyder, T.M, Liu, D.R. Angew. Chem. Int. Ed., ASAP. H 53 Ordered Multistep Synthesis in a Single Solution Ph O Ph P Ar R3 H O O H Ar Ph Ph Ar O P Ph Ph P R1 H R2 H 4 to 30oC Ar Ph P O Ph Snyder, T.M, Liu, D.R. Angew. Chem. Int. Ed., ASAP. Ph Ar Ph P Ar Ph P Ph R3 R2 H R1 O 54 DNA Melting Temperature Tm Melting Temperature H NH A H O N N N R NR O N H G N N N N R T O N H N C NR N H N H O H 55 Ordered Multistep Synthesis in a Single Solution Ph O Ph P Ar R3 H O O H Ar Ph Ph Ar O P Ph Ph P R1 H R2 H 4 to 30oC Ar Ph P O Ph Snyder, T.M, Liu, D.R. Angew. Chem. Int. Ed., ASAP. Ph Ar Ph P Ar Ph P Ph R3 R2 H R1 O 56 Ordered Multistep Synthesis in a Single Solution Ph O Ph P Ar R3 H O H 4 to 30oC O H Ar Ph Ph Ar O P Ph Ph P R1 H R2 Ar Ph P O Ph Ph Ar Ph P Ar Ph P Ph R3 R2 H R1 O Ar 30 to 60oC Ph R3 R2 R1 P O Ph O 24% overall yield H 26 Ar Ph Snyder, T.M, Liu, D.R. Angew. Chem. Int. Ed., ASAP. P O Ph R1 Ar Ph P Ph R3 R2 57 Conclusions •DNA-templated synthesis is sequence-specific and compatible with a wide variety of reaction conditions •Reactions otherwise incompatible can be run in one pot, without detectable side-products, enabling the synthesis of large small molecule libraries •Multistep syntheses can be performed selectively in one solution. •This technique is still limited by compatibility with DNA backbone and aqueous conditions. 58 Conclusions •DNA-templated synthesis is sequence-specific and compatible with a wide variety of reaction conditions •Reactions otherwise incompatible can be run in one pot, without detectable side-products, enabling the synthesis of large small molecule libraries •Multistep syntheses can be performed selectively in one solution. •This technique is still limited by compatibility with DNA backbone and aqueous conditions. •Recently, DTS has been performed in THF, DMF, MeCN and DCM with minimal amounts of water 59 Acknowledgements Prof. Keith Fagnou Nicole Blaquiere Louis-Charles Campeau Melissa Leblanc Marc Lafrance Jean-Philippe Leclerc Megan Apsimon Dave Stuart 60