Transcript Document

Bio-Akumulasi
KAJIAN EKOTOKSIKOLOGI




Paparan, perilaku, dan transport
Bio-akumulasi
Toksisitas
Bioakumulasi: uptake - ekskresi
The Wildlife Research Strategy at
the intersection of the disciplines of
ecotoxicology, population biology,
and landscape ecology.
Diunduh dari:
http://www.ecologyandsociety.or
g/vol11/iss1/art23/figure1.html
Bioakumulasi



Akumulasi dari semua
sumber
Air, Udara. Padatan
Biokonsentrasi: hanya
dari air
Lake Ontario Biomagnification of PCBs
Bioaccumulation is the sum of two
processes: bioconcentration and
biomagnification.
Read more:
Bioaccumulation - water,
environmental, pollutants, EPA,
chemicals, toxic, life
http://www.pollutionissues.com/ABo/Bioaccumulation.html#ixzz3npXNLA
gG
Kajian bioakumulasi?




Minamata Bay, Japan. 1956. Hg pollution.
Landmark for environmental studies.
DDT pesticides. egg shell thinning
TBT, oyster shell thickness, imposex in
snails
Tanpa lingkungan yang baik, kita tidak
dapat bertahan hidup!
Bioakumulasi vs. Toksisitas


Linking the two is challenging
Predicting them is also difficult
Bioaccumulation
Toxicity
Prediction???
Istilah Bioakumulasi



Bioavailability: fraction
available
Bioconcentration: uptake
from water
Bioaccumulation: uptake
from water and food
Methylmercury accumulates as you move
up the food chain:
1.
2.
3.
Methylmercury in the water and
sediment is taken up by tiny animals
and plants known as plankton.
Small fishes eat large quantities of
plankton over time.
Large predatory fish consume many
smaller fish, accumulating
methylmercury in their tissues. The
older and larger the fish, the greater
the potential for high mercury levels in
their bodies.
Diunduh dari:
http://www.mercury.utah.gov/bioaccumulat
ion.htm
Bioaccumulation of Mercury
When mercury falls in rain or snow, or when it falls out
of the air as dry deposition, it may eventually be
washed into waterbodies by rain.
Istilah Bioakumulasi




Biomagnification: increase in conc at higher
levels
Body burden, concentration
Equilibrium: between compartments
Steady-state: within one compartment, in and
out equal
Istilah dalam bioakumulasi







Koefisien Partisi (Kd) / Kow
Laju Eliminasi
Laju Depuration
Asimilasi
Absorption / Penyerapan
Adsorption / Penjerapan
Toxicokinetics
Jalur-jalur Paparan Bahan Kimia




Water
Food
Sediments
Bioaccumulation:
uptake - excretion
Diunduh dari : http://www.atsdr.cdc.gov/sites/springvalley/images/exposure_pathways.gif
Uptake senyawa / bahan kimia



Lipophilic: lipid
biolayer, untuk
molekul polar yang
tidak bermuatan
Aqueous: difasilitasi,
aktif
Endositosis: untuk
nanopartikel dan
makro-molekul
Basic Mechanism of
Phytoextraction of Heavy
Metals
http://bio349.biota.utoronto.ca/2
0079/20079bio349sasha/phytoex
traction.html
Transport senyawa Kimia


Proses difusi pasif:
 Dari konsentrasi tinggi menuju ke
konsentrasi yang lebih rendah
 Tidak memerlukan ligand
Transport yang difasilitasi:
 Dari konsentrasi tinggi ke konsentrasi
yang lebih rendah
 Memerlukan Ligand
Transport senyawa Kimia


Transport Aktif

Dari konsentrasi rendah ke konsentrasi tinggi

Diperlukan energi
Adsorption /Penjerapan: Fisiko-kimia
Source Identification of Florida Bay's Methylmercury Problem: Mainland Runoff
versus Atmospheric Deposition and In Situ Production.
By Darren Rumbold1, Larry Fink1, Nicole Niemeyer1, Angela Drummond1, David Evans2, David Krabbenhoft3,
and Mark Olson3
1South Florida Water Management District, West Palm Beach, Fl., USA
2National Oceanic and Atmospheric Administration, Beaufort, NC., USA
3US Geological Survey, Middleton, WI., USA
THg and MeHg in sediments collected semi-annually from the bay and upstream canals ranged
from 5.8 to 145.6 ng/g dry weight (median was 19.9 ng THg/g) and from 0.05 to 5.4 ng/g dry
weight (median was 0.26 ng MeHg/g), respectively. Although the highest median THg
concentration occurred in sediment from the C111 Canal (115 ng/g), sediments from the
mangrove transition zone along both flowpaths also contained relatively high levels of THg.
The highest median sediment-MeHg (1.76 ng/g) occurred at the mouth of Taylor River. While
these data must be normalized based on total organic carbon (measured in later cores) before
any definitive conclusions can be reached, it was clear that sediments both from upstream
marshes and from the bay often contained elevated concentrations of MeHg. Sediments
collected from near Nest Key, for example, contained up to 1.8 ng MeHg/g, which constituted
almost 8 percent of the THg present.
Adsorption / Penjerapan

Model penjerapan menurut Freundlich :
Model Empirik
1/n
 X/M = kC
X adalah jumlah yang dijerap, M adalah masa
penjerap (adsorbent), k adalah konstante, C
adalah konsentrasi “solute” setelah proses
penjerapan
Adsorption/ Penjerapan

Model Penjerapan Langmuir : Model Teoritis

X/M = abC/(1+bC)
“a” adalah jerapan maksimum
“b” adalah afinitas regresi linear
Dose-dependent growth inhibition and bioaccumulation of hexavalent chromium in land snail Helix
aspersa aspersa
by Michael Coeurdassier, Annette Gomot-de Vaufleury, Pierre-Marie Badot
Environmental Toxicology Chemistry (2000)
Volume: 19, Issue: 10, Pages: 2571-2578
The toxicity of Cr6+ was determined in a laboratory environment in the snail Helix aspersa aspersa. The effects
on growth were evaluated on animals reared in controlled conditions at the age of one month that had been
exposed for 28 d to increasing doses of Cr6+ mixed in with their food. Two experimental groups were set up with
concentrations of chromium in the feed of 250 to 1,250 Mu g/g(test 1) and 100 to 800 Mu g/g (test 2). Growth
inhibition was dose dependent, and the mean EC50 calculated at four weeks for tests 1 and2 were, respectively,
354.7 and 298.8 Mu g/g and for the EC10 195.3 and 160.9 Mu g/g.
The levels of Cr6+ bioaccumulated in thefoot and the viscera of the snails were dose dependent in both typesof
tissues. The highest concentrations occurred in the viscera, the levels being 0.79 Mu g/g in the controls and
reaching 3,067 Mu g/g inthe animals exposed to the maximum contamination (1,250 Mu g/g).
These high levels of bioaccumulation in addition to the lower concentrations of Cr6+ excreted in the feces than
those present in the food suggest that chromium is not physiologically regulated by Helix aspersa. The results
provide added support for the use of snails as a model to determine the toxicity of substances in laboratory
biotests by measuring the effects on growth and by assessing bioaccumulation.
Langmuir
Difusi




Pergerakan suatu material kimia
menuruni gradien elektron
Difusi sederhana: Saluran ion, Lapisan
lemak
Difusi difasilitasi: Memerlukan carrier.
Difusi pertukaran – Pertukaran ion.
Diffusion

Proses difusi dapat dijelaskan dengan
Hukum Fick:

dS/dt = -DA dC/dx

S is the movement across the surface, D is
the diffusion coefficient, A is the surface area
dC/dx is the concentration gradient across
the boundary of interest.

Transport Aktif



Melawan gradien kimiawi elektron
Memerlukan energi seperti ATPase,
pompa ion
Beberapa jenis logam dapat diangkut
dengan transport aktif


Cd-Ca
Cs-K
Endocytosis



Pinocytosis
Phagocytosis
Fe-transferrin protein.
Metalloproteins and metalloenzymes
These are metal complexes of proteins. In many
cases, the metal ion is coordinated directly to
functional groups on amino acid residues. In
some cases, the protein contains a bound
metallo-cofactor such as heme. In
metalloproteins with more than one metalbinding site, the metal ions may be found in
clusters. Examples include ferredoxins), and
nitrogenase, which contains both Fe4S4 units and
a novel MoFe7S8 cluster.
Read more:
http://www.answers.com/topic/bioinorganicchemistry#ixzz3nk96spoz
Iron complex of protoporphyrin IX, or heme.
Biotransformation/detoxification






Biotransformation: biologically
mediated such as enzymes
Elimination
Detoxification
Sequestration
Redistribution
Activation
The Liver Detoxification Pathways
Inside the liver cells there are sophisticated
mechanisms that have evolved over millions of years
to break down toxic substances. Every drug, artificial
chemical, pesticide and hormone is broken down
(metabolised) by enzyme pathways inside the liver
cells.
Many of the toxic chemicals that enter the body are
fat-soluble which means they dissolve only in fatty or
oily solutions and not in water. Fat-soluble chemicals
have a high affinity for fat tissues and cell
membranes, which are made of fatty substances. In
these fatty parts of the body toxins may be stored for
years, being released during times of exercise, stress
or fasting. During the release of these toxins,
symptoms such as headaches, poor memory,
stomach pain, nausea, fatigue, dizziness and
palpitations may occur.
The liver is designed to convert fat-soluble chemicals
into water-soluble chemicals so that they may then
be easily excreted from the body via watery fluids
such as the bile and urine.
Sumber:
http://www.positivehealth.com/article/weight-loss/ahealthy-liver-and-weight-loss
Transformasi Logam




Bio-methylation, Methyl-Hg, biotransformasi
Metallothionein,<7000 Da. 25-30% amino
acid as cysteine.
Phytochelatins (in plants): glutothioneine
/ cysteine
Bio-mineralisasi / sequestration
Senyawa Organik


Phase I reaction: add –COOH, -OH, NH2, -SH to increase hydrophilicity (add
O by MFOs)
Phase II: form conjugates (glucuronic
acid, etc) to inactivate and foster
elimination.
Elimination






Elimination: metabolism/excretion
Depuration: untuk mencuci lingkungan
Clearance: untuk kontaminan organik
Growth dilution
Efflux
There are subtle differences among these
terms
Mekanisme Eliminasi





Ekskresi (melalui ginjal)
Molting
Produksi telur
Hilang dalam bentuk bulu/rambut, kulit, insang
Exhalation
Urine is produced in the glomeruli and
renal tubules and carried to the renal
pelvis by collecting tubules. The glomeruli
act as simple filters, through which water,
salts, and waste products from the blood
pass into the spaces of Bowman's
capsules and from there down into the
renal tubules. Most of the water and salt
is reabsorbed from these tubules; the
remainder is excreted as urine. The renal
tubules also secrete other salts and waste
products from the blood into the urine.
The average amount of urine excreted in
24 hours is about 1.4 litres (2.4 pt), but
the quantity varies considerably,
depending on intake of fluid and loss
from such sources as the skin in
perspiration, or from vomiting.
Diunduh dari:
http://dspace.dial.pipex.com/town/plaza/j
c75/inf_2.htm
Pemodelan Eliminasi


Model berbasis laju-konstan
Sederhana , fungsi kehilangan orde
pertama
 dC/dt = -kC
 Ct = Co*exp(-kt)
t1/2 adalah waktu paruh biologis
(retention life) = ln2/k
Pemodelan Eliminasi
Fungsi kehilangan dua kompartemen:

Ct = C1*exp(-k1t) + C2*exp(-k2t)
Back stripping technique (C2 first, then C1)
Pemodelan Eliminasi



Model yang lebih rumit:
dC1/dt = k21XC2-(k10+k12)xC1
dC2/dt = k12xC1 – k21xC2
Kontrol Akumulasi

Kualitas Senyawa/Bahan Kimia



Biologis





Species
Bentuk senyawa kimia
Physiologis dan biokimia
Genetik
Ecologis
Perilaku
Kondisi Lingkungan


Temperatur, Salinitas
pH, Unsur Hara
Ketersediaan Biologis


Bebas untuk penyerapan
Bebas untuk diambil dan menyebabkan efek pada
tempat berlangsungnya proses
Kualitas Kimia-Logam : Air


Spesies-spesies Ion bebas
Free ion + inorganic complex ion +
organic complex ion
 Free ion is the most important species
bioavailable to the organisms and
causing toxicity (the so called free ion
activity model—FIAM)
Ion dan Spesiasinya dalam Air laut



Anion: Cl, HCO3, CO3, F, PO4, NH3,
SO4, SiO4, OH
Kation: H, K, Na, Ca, Mg
Logam:



Cd: CdCl2
Ag: AgCl2Zn: Zn2+, ZnOH+, ZnCO3, ZnCl+
Model FIAM




Implikasi dari Model
Contoh-contoh
Perkecualian : HgCl2, AgCl
Mekanisme transport logam
Metal Uptake by Phytoplankton.
(Adapted from Kustka et al, Journal of Phycology, 2007)
Diunduh dari: http://www.princeton.edu/morel/research/metal-uptake/
FIAM
Campbell dan Tessier (1996):
Aktivitas logam-bebas sangat menentukan serapan, nutrisi dan toksisitas semua kation logam-logam
mikro
Journal of Environmental Science and Management, Vol 14, No 2 (2011)
Bioaccumulation in Nile Tilapia (Oreochromis niloticus) from Laguna de Bay, Philippines
Victorio B. Molina, Ma. Victoria O. Espaldon, Maxima E. Flavier, Enrique P. Pacardo, Carmelita M. Rebancos
This study provides an assessment of the risks to human health associated with the exposure to heavy
metals bioaccumulation in Nile tilapia (Oreochromis niloticus) from Laguna de Bay. Samples of the fish were
collected in eight sampling stations in three major areas of the lake during the dry and wet seasons. Dry
season samples were collected from May to June 2010 and wet season samples from September to
November 2010. Coordinates of sampling site locations were recorded using Global Positioning System
(GPS) and plotted in Geographic Information System (GIS) digital maps. Heavy metals analyses for
cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), and chromium (Cr) were conducted using am Atomic
Absorption Spectrophotometer (AAS) and a Mercury Analyzer (Mercur-Duo).
Estimates of health risks associated with fish consumption were summarized according to non-carcinogenic
and carcinogenic health effects. Non-carcinogenic Health Quotient (NHQ) values of the five heavy metals
showed that lead is the most urgent pollutant of concern in terms of adverse health effects from risks
associated with fish consumption from all sampling locations in the lake. Among the five heavy metals only
arsenic is a confirmed human carcinogen (Class A) through the oral route of exposure.
The highest life time cancer risk for arsenic was computed from sampling station 2B (west bay) during the
dry season with risk value of 8.5x10-4 or an excess of 85 cancer cases per 100,000 population. From the
point of view of human health protection and disease prevention, the Nile tilapia from Laguna de Bay is not
fit for human consumption due to arsenic and lead contamination.
MODEL LIGAN BIOTIK
KONTAMINAN ORGANIK

Kow secara langsung mempengaruhi
akumulasi kontaminan organik dalam
organisme akuatik.

QSAR: Quantitative Structural Activity
Relationship.

BCF: Faktor Biokonsentrasi
0.01
1
Fase Partikel: Fito-plankton




Cytoplasm hypothesis: assimilation is
related to the metal distribution in algal
cytoplasm
Does it work? Some
Why? Easy digestion
Significance? Increase our predictability
Copepods: Hipotesis Sitoplasma
(Reinfelder & Fisher 1991, Science)
Pencernakan Zooplankton
Copepod’s gut
Desorption
Cell breakage and cytosolic discharge
M
Speed to pass the gut
Diatoms
Assimilation
% Cd assimilated
Asimilasi Cd dalam Copepoda
100
80
Cd
60
40
20
r2=0.981
0
0
20 40 60 80 100
% Cd in diatom's cytoplasm
Asimilasi Zn dalam Copepoda
% assimilated by copepods
80
60
40
Calanus-Tp
Calanus-Tw
Acartia-Tp
Acartia-Tw
20
0
0
20
40
60
% in diatom's cytoplasm
80
% assimilated
Aliran Makanan melalui Saluran Pencernaan Copepoda
100
75
50
25
Cd
0
0.0
0.2
0.4
0.6
Food Passage (h)
Pencernaan Bivalve
bivalve’s gut
Desorption
Cell breakage and cytosolic discharge
M
Speed to pass the gut
Diatoms
Digestive gland
Assimilation
Assimilation in
the mussel M. edulis (Wang
& Fisher 1996)
Fase Partikel : Sedimen


Teori tentang AVS (acid volatile sulfide):
Cd2+ + FeS
Fe2++ CdS

Definisi AVS: Konsentrasi sulfida yang
terekstraks oleh HCl

Kontrol AVS terhadap ketersediaanbiologis logam
Menduga ketersediaan-biologis sedimen



Ekstraksi partial (1 N HCl)
Ekstraksi Sequential (Tessier et al. 1979).
Different geochemical phases (easily exchangeable, Fe oxide)
Akar tanaman menyerap
hara tersedia (kation)
melalui proses pertukaran
ion.
http://bcs.whfreeman.com/thelif
ewire8e/pages/bcsmain_body.asp?v=chapter&s=36
000&n=00010&i=36010.01&o=|
00010|&ns=0
Pengaruh Temperatur

Temperatur sangat mempengaruhi
metabolisme binatang

Serapan meningkat kalau suhu T meningkat,
tetapi juga ada pengecualiannya

Tergantung pada mana yang lebih terpengaruh:
uptake atau efflux.
Kuantitas Biologis



Hubungan Alometrik
Y = a Wb (fungsi pangkat)
 Y is the metal burden (without weight unit), W
is the weight
Weight specific function: y = a Wb-1
 y is the metal concentration (with weight unit)
Kuantitas Biologis
b >1
ug/g
konsentrasi
b=1
b<1
g (bobot)
Model Kinetik: Orde-zero

dC/dt = k
C
t
Model Kinetik : Orde Pertama



dC/dt = kC
C = Cox exp(kt)
Most typical
C
t
Model Kinetik: Orde Ke dua


dC/dt = kC2
not very common
C
t
Model Kinetik : Kinetika Jenuh

V = dC/dt = Vmax C/(km+C)
Vmax
V
km
C
Partisi Keseimbangan (EqP)


Sederhana dan langsung
Appealing to environmental policy makers

Used in Water Quality Criteria and Sediment
Quality Criteria

BCF = C/Cw
 BCF: Faktor biokonsentrasi
 C : Konsentrasi dalam organisme
 Cw : Konsentrasi dalam fase larutan
Partisi Keseimbangan (EqP)



Assumptions:
 Equilibrium
 One phase of uptake
Examples of WQC failing in protecting
environments:
Se in San Francisco Bay, USA
water
?? organism
Food
Model Kinetik: Satu Fase




dC/dt = k1xCw – k2xC
Ct = Cw (k1/k2) [1-exp(-k2t)]
Css/Cw = k1/k2 = BCF
k1: uptake rate constant, Cw: water conc,
k2: efflux rate, Css: conc in organisms
under steady state
water
k1
organism
k2
Kinetic model: Berbasis bioenergetik



dC/dt = k1xCw + AExIRxCf– k2xC
Ct = (k1xCw+AExIRxCf)/k2 (1-e-k2t)
AE: assimilation efficiency, IR: ingestion
rate, Cf: conc in food
water
Food
Animal
Model berbasis Bio-energetik






Iw is influx rate from water
If is influx rate from food
k is efflux constant
Iw = absorption efficiency x filtration rate
x concentration in water
If = assimilation efficiency x ingestion rate
x concentration in food
Css = (Iw + If)/k
Problem tentang Model


Terlalu banyak parameter
Tidak ada nilai generik untuk setiap parameter
Implikasi Pemodelan:
 Jalur paparan
 Sumber tercemar, implikasi untuk:
 Kriteria kualitas air
 Kriteria kualitas sedimen

Prediksi konsentrasi
Transfer Trophik



Konsentrasi karena serapan makanan harian :
C = If/k
Faktor transfer trofik adalah C/Cf dan dapat
dihitung :
TTF = AE * IR /k
TTF dalam rantai makanan akuatik
 MeHg
 Bio-magnifikasi PCB
Konsekwensi Transfer Trofik



Biomagnification (we have to be careful about this term)
Biodiminification
Constancy
Biomagnification, also known as
bioamplification, or biological
magnification is the increase in
concentration of a substance, such as the
pesticide DDT, that occurs in a food chain
Bioaccumulation of some heavy metals in tilapia fish
relevant to their concentration in water and sediment of
Wadi Hanifah, Saudi Arabia
Abdel-Baki, A. S.1, 2*, Dkhil, M. A.1,3 and Al-Quraishy, S.1
1Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh- 11451, Saudi Arabia.
2Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
3Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt.
Accepted 25 February, 2011
Concentrations of some heavy metals (Pb, Cd, Hg, Cu and Cr) were
determined in water, sediment and tissues of tilapia fish collected from
Wadi Hanifah during summer 2010.
The concentrations of the heavy metal in water were within the
international permissible level. Cu had the highest accumulating level in fish
whilst Hg had the lowest.
The transfer factors of all metals in fish from water were greater than those
from sediments. This led to the conclusion that fish bioaccumulation with
these metals was from water.
Heavy metals under study in the edible parts of tilapia were within the
safety permissible level for human use.
Biomagnifikasi dalam zoo-plankton
Assimilation efficiency (%)
100
Copepods
80
biomagnified
60
Zn(T)
Possibly
biomagnified
Zn(A)
Cd(A)
Se(T)
biodiminished
40
Cd(T)
20
IR=20%
Co(T)
Ag(T)
IR=60%
0
0.01
Se(A)
0.1
Efflux rate constant (d-1)
1
Biomagnifikasi dalam ikan
Assimilation efficiency (%)
100
Fish
CH3Hg(L)
80
biomagnified
Cs(L)
Possibly biomagnified
Se(L)
60
40
Zn(L)
Se(M)
Zn(M)
20
IR=2%
IR=10%
0
0.001
Cd(L)Cd(M)
Ag(M)
biodiminished Am(M)
0.01
Efflux rate constant (d-1)
0.1
Biomagnifikasi dalam bivalves
Assimilation efficiency (%)
100
Bivalve
80
biomagnified
IR=10%
60
Zn(C)
Zn(S) Cd(S)
40
Cd(C) Se(M)
Se(S)
Cd(R)
Co(M)
20
0
0.001
Se(C)
Possibly
biomagnified
Zn(R)
Zn(M)
Zn(P)
Se(R)
Cd(M) Cd(P)
Se(P)
Cr(M) Am(M)
IR=30%
Ag(M)
biodiminished
0.01
-1
Efflux rate constant (d )
0.1
Biomagnifikasi dalam gastropoda
Assimilation efficiency (%)
100
Cd(B)
Cd(N)
80
Zn(N)
Zn(B)
60
Possibly
biomagnified
biomagnified
Cs(B)
40
Gastropod
20
0
0.001
biodiminished
IR=2%
IR=10%
0.01
-1
Efflux rate constant (d )
0.1
Rataan Geometrik dalam rantai makanan benthik
80
8
-1
Concentration (g g )
6
Cd
60
4
40
2
20
0
300
0
Zn
200
100
0
Phy Mus Sna
Cu
Sumber:
Kerry BC et al. 2007,
Science
13 July 2007
Pendefinisan Posisi Trophik




Secara sederhana: produsen primer,
Konsumen primer, Konsumen sekunder,
dll.
Typically difficult to assign to a specific
level
Isotopic discrimination (more heavier
isotope with increasing trophic position)
Lebih jelas N daripada Carbon