Selection of materials

Download Report

Transcript Selection of materials

Application of Materials
Part II, Engineering materials
Structural strength
Strenth of
Materials
Stiffness
Reliability
Lifetime
Strength of materials
Properties determined at tensile/compression
tests

N
mm2
Fmax
Rm
FeH
Rp0,2
FeL
Permanent
elongation
Jäävpikenemine
Total elongation
Kogupikenemine
0
L, mm


A
At
Criteria for materials selection


plastic materials – yield strength (yield limit) –
Re, Rp (Rec, Rpc)
brittle materials – strength limit – Rm (Rmc), Rm/
Classification of materials (Re, Rp0,2)




low strength
medium strength
high strength
super high strength
< 250 N/mm2
250...750 N/mm2
750...1500 N/mm2
> 1500 N/mm2
Stress concentration
F
m
m
m ax
F
R
 max  2 m
t
F
F
t
R
Stiffness
Stiffness D = Ex K(geometric characteristic of crosssection)
At tension K = S (cross-section area)
At bending K = I (moment of inertia)
I = bh3/3
Modulus of elasticity
NormaalNormal
NihkeShear

MahtVolume


E=tg
E=
E



G=tg
G=
G=3/8E


K=tg
K=
K=E

Modulus of elasticity
Material
E, N/mm2 x 109
Diamond
WC
SiC
Al2O3
TiC
Mo & Mo-alloys
Co & Co-alloys
Ni & Ni-alloys
Steels
Cast irons
Cu & Cu-alloys
Ti & Ti-alloys
Zn & Zn-alloys
Al & Al-alloys
Sn & Sn-alloys
Graphite
Pb & Pb-alloys
Plastics
Rubbers
PVC
1000
450-650
500
390
380
320-360
200-250
130-230
190-210
170-190
120-150
80-130
45-90
70-80
40-50
30
15
1-5
0,01-0,1
0,003-0,01
Reliability (1)
Toughness – notch impact energy KU or KV, J
– fracture toughness KC, N/mm2  m1/2
KU
fracture
Ductile
Kiulise
pinna %%
TDBT
T
KHL
T
T’
TKHL
TDBT
DBT T
KHL
100
50
0
T50
T
55
2
10
R 0.25
TDBT – ductile-to-brittle transition
10
45
55
10
R 1.0
10
T  KU, KV – cold brittleness
T
5
KU
Reliability (2)
Influence of C, ordinary and alloying elements to KU
C
60
TDBT
T
KHL
KU
0,01% C
0,1% C
0,2% C
0,4% C
40
20
0,6% C
0
-20
0,01
0,03
0,05 %C
P
KU
-100
0
N
KU
norm
normal
0,03% P
600
elelteras
steel
N=0%
külmdef
cold
worked
teras
0,12% P
0
40
50
V
-20
Si
0
S
0,1% C
0,2% C
0,3% C
0
N = 0,01 %
o
80 TKHL
, CC -60 -40
DBT
TKHL
T
DBT
200
toomas
külmdef
cold
worked
o
+200 TTDBT
KHL, C
400
N = 0,1 %
0,03% P
-40
+100
+20 TKHL
, CC
DBT
o
-100
0,02
0,04
0,06 %S
0,12% P
-40
0
40
N = 0,01 %
o
80 TKHL, C
-60 -40
-20
0
-100
o
+20 TKHL, C
0,02
50
Si
V
0
Cr
50
Külmhapruslävi
T ,CT50, C
transition
Ductile-to-brittle
Reliability (3)
-50
-100
-150
Mn
Ni
-200
0
2
4
6
Legeerivate
elementide
%
%
of alloying
elements
8
0,04
0,06
Dependence of M toughness of
A-grain size
Reliability (4)
KU, KV
Purustustöö
Dependence of KU/KV on temperature
low
strength
Madaltugev
KU,
A U, JJ
15,4
14,0
12,6
11,2
9,8
8,.4
Kõrgtugev
high
strength
7,0
5,6
4,2
2,8
Temperatuur
T
2
3
4
5
6
7
no.
8 Grain
Tera nr.
Fine and coarse grain steels
a
b
T, C
T, C
1200
1200
1100
1100
1
A
1000
1000
Acm
900
800
A+T
800
A+F
AC1
A1
700
700
F
F+T
600
600
0
1 – killed steel
2 – rimmed steel
900
A3
0,5
1,0
2
1,5 C%
dA
dP
d
Influence of microalloying elements
140
2 2
ferrite,
size oftera,
Grain
Ferriidi
mm
120
100
V
Vanaadium
80
60
40
20
Ti
Titaan
Nb
Nioobium
0
0 0,02 0,04 0,06 0,08 0,10 0,12
Alloying elementide
elements, % %
Legeerivate
Plane strain fracture toughness K1c
At tension K1c
b
F
Coefficient of stress intensity
K max  max a [MPam1/2]
a
F
Material
WC
TiC
SiC
Al2O3
SiO2
Steels
-low carbon
-maraging
K1C, MPa 
m1/2
(E)
6 (680)
4 (440)
3 (420)
3 (320)
0,7 (100)
54
110-175
Fracture toughness K1c, MPa  m1/2
Relationship between K1c and yield
strength
Superplastic
steels
Lowalloyed
highly
tempered
steels
Maraging
steels
Precipitation
hardened
stainless
steels
Yield strength, MPa
Life time (1)
R
(R = min/max)
-1 – symmetric loading
Fatigue
a
b

Pingeepüür


R
F
Impactors:
- surface roughness
- stress state
- stress concentrations
N1
N2
N3
107
N
Steels N = 107
Nonferrous alloys N = 108
Life time (2)
Material
Plain carbon
steel
-strain
hardened
-annealed
Alloyed steel
Al-alloys
-wrought alloys
-cast alloys
Ti-alloys
Cu-alloys
Rp0,2,
N/mm2
-1,
N/mm2
275
475
1700
275
110
900
450
240
340
700
100
80
500
150
Life time (3)
Creep  = f(, T, t)
 low temperature T/Tm < 0.5
 high temperature T/Tm > 0.5
Impactors
 structure
750
 alloying (super creep alloys) – 
1.0 /1000
 TMT
Corrosion
Modes of corrosion
Chemical
in dry gases
in organic liquids
in water containing environments
Electrochemical
Biochemical
in melt electrolytes
Types of corrosion
a
b
c
d
e
f
g
h
i
a - ühtlane, b - ebaühtlane, c - valikuline, d - laiguline,
e - rõugeline, f - täpiline, g - pinnaalune, h - kristallidevaheline,
i - pinge korrosioon
Types of corrosion:
a – uniform
b – nonuniform
c – selective
d – spotted
e – pitting
f – dotted
g – under surface
h – intercrystal
i - stress
Chemical corrosion of metals (1)
2 Mg + O2 = 2 MgO
2 Fe + 3 O2 = Fe2O3
For protection
Voxide > Vmetal
Kui Voxide/Vmetal > 1 – Cd, Al, Ti, Zr, Zn, Ni, Cr, Fe
At high Voks / Vmet (1,2…2,0)  cracking
High temperature corrosion
T  1000 C – oxide layer  electroconductive
Chemical corrosion of metals (2)
Corrosion influencing parameters
 structure
 surface treatment
materials parameters
 internal stresses
 T



gas composition
velocity
environmental parameters
heating parameters
Chemical corrosion of metals (3)
Protection
all. el
base metal all. el.
base metal
 alloying (F
)
, rion  rion
oxide  Foxide
 coatings
 protective atmosphere (at heat treatment) (H2 +
N2 + H2O; CO + CO2 + N2; etc.)
Electrochemical corrosion of metals (1)
Moisture + H2S, Co2,
So2, NaCl 
electrolyte
metals  galvanic pair
Normal potential
E, V
-2,37
-1,66
-1,63
-1,18
Galvanic series
Normal condition
Mg
Al
Ti
Mn
-0,76
-0,74
Zn
Cr
-0,44
-0,40
-0,25
-0,14
0,13
+0,34
+0,80
+1,20
+1,50
Fe
Cd
Ni
Sn
Pb
Cu
Ag
Pt
Au
Sea water
Mg
Zn
Cd
Al
soft steel
Pb
Sn
Ni
brass
Cu
monel (Ni alloy
Cr-steel (13% Cr)
Ti
Cr
Ag
Au
Pt
Electrochemical corrosion of metals (2)
Microgalvanic pairs at steels
Atmosphere
Moisture
film
Metal
Electrochemical corrosion of metals (3)
Protection (1)

Selection of materials
Table: Allowed contacts of metals
I
Mg
II
Al
Zn
Cd
Group
III
Fe
plain
carbon
steel
Pb
Sn
IV
Ni
Cr
V
Ti
Cu-Ni
alloy
Stainless Cu-Zn
steel
alloy
Cr-steel Cu
Ag, Au
Protection (2)

Protective coatings
- metallic (less active metals (Cu, Ni, Sn, Ag) – up
to coating must be undamage; active (Zn, Co) –
protection up to end)
- paints, lubricants

other
- cathodic protection
- protector protection
- anodic protection
- corrosion inhibitors (high molecular matters)
Wear
Modes of wear
Mechanical
Corrosive-mechanical Adhesive
-abrasion
-erosion
-cavitation
-fatigue wear
-oxidizing wear
-fretting corrosive wear
Method for wear protection





hardening, thermo-chemical treatment
overwelding
surface alloying
coating (chemical, thermo-chemical, thermally
sprayed, PVD, CVD, mechanical)
selection of pairs (by adhesion)
Wear testing methods
a
b
F
F
I
c
d
F
2
1
Description
Sliding friction with or
without a lubrication
F
3
1
F
F
II
4
1
5
III
F
5
3
6
8
F
IV
7
1
6
Abrasive wear
3
F
I, II - libisev hõõrdumine määrimisega või ilma;
III - abrasiivne kulumine;
F
5
Rolling friction with or
without a lubrication
Material groups
Metals
Cermets
MCM
CCM
Ceramics
Glass-ceramics
GCCM
Composites
PCM
FRG
Polymers
MCM
CCM
PCM
GCCM
FRG
Metal composite materials
Ceramic composite material
Polymeric composite material
Glass-ceramic composite material
Fiber-reinforced glass
Glass
Specific strength of materials (1)
Material group
Metals and alloys
Plastics
Cast irons
Plain carbon
steels
Alloy steels
Al-alloys
Cu-alloys
Ti-alloys
Mg-alloys
PVC
PE
PC
Fiberglass
plastic EP
.
PC

kg/m3
7800
7800
7800
2700
8900
4500
1750
Rm
N/mm2
150…800
320…1000
460…1650
150…500
230…700
300…1450
150…335
1350
950
1050
1250
1250
10…25
20…40
35…80
30…90
80…170
Rm/
up to
10
13
21
18
8
32
20
8
14
Specific strength of materials (2)
Material group
Ceramics
Compo
-sites
Wood

kg/m3
3980
4240
3160
3220
3170
2700
Al2O3
TiO2
3Al2O3 2SiO2
SiC (-modif.)
Si3N4
Al-B (30%)
Al-B (50%)
Fiberglass plastic EP 1250
EC
Carbon-Carbon
composite
3-directions
Pine
550 II
Oak
690 II
Rm
N/mm2
300…400
70…170
110…190
450…800
500…1000
80
110
30…90
80…170
Rm/
up to
10
4
6
25
22
4
14
35 (2000C)
5 (3000C)
89
97
17
Basic physical and mechanical
properties of construction materials (1)
Property
Density, 
kg/m3 x 10-3
TS, C
Hardness
Workability
Tensile
strength Rm,
MPa
Compressive
strength Rmc,
MPa
Metals
2-6
(average.
8)
Low. 
High.
Sn232,
W3400
Average
Good
Ceramics
2-17
(average.
5)
Polymers
1-2
High 
4000
Low
High
Poor
Low
Good
 2500
 400
 120
 2500
 5000
 350
Basic physical and mechanical
properties of construction materials (2)
Property
Modulus of
elasticity, E GPa
Creep resistance
at high
temperatures
Thermal
expansion
Thermal
conductivity
Electrical
properties
Chemical
inertness
Metals
Ceramics
Polymers
40  400
150  450
0,001  3,5
Poor
Outstanding
-
Average 
High
Low 
Average
Average
(mostly
lowers then
t )
Average
Very high
Very high
Conductors
Isolators
Isolators
Low 
average
Outstanding
Good in
general
Thank you for attention
[email protected]