Transcript Document

Distortions of
4C60
Funding: Hungary OTKA T 034198, T 029931
US NSF-INT 9902050
studied by infrared spectroscopy
G. Klupp, F. Borondics, G. Oszlányi, K. Kamarás, N. M. Nemes*, J. E. Fischer*, A. F. Hebard**, D. B. Tanner**
Research Institute for Solid State Physics and Optics, P. O. Box 49, Budapest, H 1525, Hungary, email: [email protected]
*Laboratory on the Research of the Stucture of Matter, University of Pennsylvania, Philadelphia, PA 19104, USA
**Department of Physics, University of Florida, Gainesville, FL 32611, USA
600
K4C60, Rb4C60, Cs4C60
Na4C60
4 Na + C60
200 oC 10 d
1 regrind
Na4C60
350 oC 10 d
1 regrind
K4C60
IR Absorbance (a.u., baseline corrected)
Preparation
Mott-Jahn-Teller insulator [1]
4 K + C60
D2h [2]
350 oC 20 d
1 regrind
4 Rb + C60
Rb4C60
110 K
K4C60
300 K
600
Detected molecular distortions:
Cs4C60 neutron diffraction: D2h at 5 K, 293 K [3]
K4C60 IR: D2h at 20-200 K, D3d / D5d at 300 K[4]
[5]
6 Gu
7 Hu
IR: 4 (T1u)
600
1300
1400
700
500
1400
Rb4C60
300 K
500
600
700
-1
1200
* / cm
600
1300
1200
Cs4C60
1300
1400
1300
1400
300 K
475 K
500
1400
700
96 K
600
700
-1
1200
* / cm
Transition temperature: 200-220 K
-1
Transition temperature: 270-290 K, 400 K
Ci
1 Au
(0  1)
12 Au
(1  12)
15 Au
(0  15)
24 Au
(0  24)
35 Au
(0  35)
87 (Au)
A4C60 (A = Na, K, Rb, Cs) are air sensitive 
preparation and KBr pellet pressing in dry box
measurements in dynamic vacuum
-1
D2h
1 Au
(0  0)
4 B1u + 4 B2u + 4 B3u
(1  3)
5 B1u + 5 B2u + 5 B3u
(0  3)
6 Au + 6 B1u + 6 B2u + 6 B3u
(0  3)
14 Au + 7 B1u + 7 B2u + 7 B3u
(0  3)
66(B1u, B2u, B3u)
Sample characterization: XRD, Raman, IR  purity > 95 %
Rb4C60
K4C60
571 cm
-1
K4C60
-1
200
250
300
Temperature (K)
IR measurements: LN2 cooled cryostat
Bruker IFS28 FT-IR
transmittance measurements while warming up
-1
1325 cm
-1
1349 cm
-1
1364 cm
647 cm
-1
691 cm
150
200
250
100
300
Temperature (K)
Ci
4Au + 4Au + 4Au
Cs4C60
D2h
4B1u + 4B2u + 4B3u
Rb4C60
D3d / D5d
4Eu + 4A2u
K4C60
D3d / D5d
4Eu + 4A2u
C60
Ih
4T1u
every T1u split
only T1u(3) & (4)
splitting observed
many strong new modes
+ 800 cm-1 mode (typical
of single bonded fullerene
polymers)

covalent bonding
strong distortion
-1
200
300
646 cm
-1
651 cm
Cs4C60
572 cm
-1
200 300 400 500
Temperature (K)
0.00
Temperature (K)
200 300 400 500
Temperature (K)
IR(this work)
D2h
K4C60
T < 260-280K
Rb4C60
T < 180-220 K
D3d/D5d
T > 260-280K
T > 180-220 K
D2h
T < 400 K
D3d/D5d
T > 400K
NMR [6,8]
K4C60
axial rotation
250 K < T < 580 K
hindered rotation
T < 350 K
quasi-isotropic rotation
T > 350 K
bct
bco
bct
molecular axis
nonparallel with c
ordered anions
molecular axis
nonparallel with c
Conclusion
Na4C60
Cs4C60
Peak height (a.u.)
Measurements
Peak height (a.u.)
Peak height (a.u.)
Ci
hindered rotation
T < 250 K
XRD [7,3]
IR Absorbance (a.u., baseline corrected)
1300
87 K
Transition temperature: 260-280 K
Comparison at room temperature
* / cm-1
1200
Cs4C60
Linewidth (cm-1)
5 F2u
D3d
1 Au
(0  0)
4 A2u + 4 Eu
(1  2)
5 A2u + 5 Eu
(0  2)
6 A1u + 6 A2u + 6 E2u
(0  2)
7 A1u + 14 Eu
(0  2)
44(A2u, Eu )
1200
* / cm
Linewidth (cm )
4 T1u
D5d
1 Au
(0  0)
4 A2u + 4 E1u
(1  2)
5 A2u + 5 E2u
(0  1)
6 E1u + 6 E2u
(0  1)
7 A1u + 7 E1u + 7 E2u
(0  1)
26 (A2u, E1u)
350
10 d
1 regrind
4 Cs + C60
Correlation table
Ih
1 Au
oC
700
500
Linewidth (cm )
/
1400
-1
D3d
1300
Temperature dependence of Cs4C60
Peak Height (a.u.)
/
1200
Peak height (a.u.)
JTE: pn  h  Ih  D5d
700
IR Absorbance (a.u., baseline corrected)
Introduction
Temperature dependence of Rb4C60
IR Absorbance (a.u., baseline corrected)
Temperature dependence of K4C60
ordered anions@bco
or
merohedral disorder@bct
static JTE
staggered static distortion
or
dynamic JTE
static JTE
staggered static distortion
or
dynamic JTE
potential field of
counterions dominates
molecular JTE
dominates
potential field of
counterions dominates
molecular JTE
dominates
Staggered static distortion
few, weak new modes

weak distortion
References
[1] M. Fabrizio and E. Tosatti, Phys. Rev. B 55, 13465 (1997).
[2] C. C. Chancey and M. C. M. O’Brien, The Jahn-Teller effect in C60 and Other Icosahedral Complexes (Princeton
University Press, Princeton, 1997).
[3] P. Dahlke and M. J. Rosseinsky, J. Mater. Chem. 14, 1285 (2002).
[4] K. Kamarás, G. Klupp, D. B. Tanner, A. F. Hebard, N. M. Nemes and J. E. Fischer, Phys. Rev. B 65, 052103 (2002).
[5] G. Oszlányi, G. Baumgartner, G. Faigel and L. Forró, Phys. Rev. Lett. 78, 4438 (1997).
[6] V. Brouet, H. Alloul, S. Garaj and L. Forró, Phys. Rev. B 66, 155122 (2002).
[7] R. M. Fleming, M. J. Rosseinsky, A. P. Ramirez, D. W. Murphey, J. C. Tully, R. C. Haddon, T. Siegrist, R. Tycko,
S. H. Glarum, P. Marsh, G. Dabbagh, S. M. Zahurak, A. V. Makhija and C. Hampton, Nature 352, 701 (1991).
[8] C. Goze, F. Rachdi and M. Mehring, Phys. Rev. B 54, 5164 (1996).