投影片 1 - nuu.edu.tw
Download
Report
Transcript 投影片 1 - nuu.edu.tw
Lecture 08
State Feedback Controller Design
8.1 State Feedback and Stabilization
8.2 Full-Order Observer Design
8.3 Separation Principle
8.4 Reduced-Order Observer
8.5 State Feedback Control Design with Integrator
Modern Control Systems
1
State Feedback and Stabilization
Stabilization by State Feedback: Regulator Case
Plant: x Ax Bu,
x(t0 ) x0
State Feedback Law:
u Fx
Closed-Loop System:
x Ax Bu Ax BFx
A BF x
Theorem
Given
i , i 1,,n
( A,B)
Controllable
There exists a state feedback matrix, F, such that
detI A BF 1 2 n
Modern Control Systems
2
D
u
B
x
x
C
y
A
F
State Feedback System (Regulator Case)
Modern Control Systems
3
State Feedback Design in Controllable Form
0
Ac
0
a1
I n 1
a2
u Fx f1
an
0
0
Bc
1
f 2 f n x
0
1
0
0
Ac Bc F
a1 f1 a 2 f 2
0
a n f n
0
detsI Ac Bc F s n an f n s n1 a1 f1
Modern Control Systems
(8.1)
4
Suppose the desired characteristic polynomial
n
n
n 1
s
s
a
s
ac1
i
cn
(8.2)
i 1
Comparing (8.1) and (8.2), we have
f n a cn a n
f n 1 a cn1 a n 1
f 1 a c1 a1
F ac1 a1
ac 2 a2 acn an
Modern Control Systems
(8.3)
5
State Feedback: General Case (Non-Zero Input Case)
F f1
u Fx r
f2 fn
D
r
u
B
x
x
C
y
A
F
State Feedback Control System
Modern Control Systems
6
State Feedback Design with Transformation to Controllable1Form
x Ax Bu
y Cx
Desired poles: 1 ,, n
x Tz
Controllable From:
i 1
z Ac z Bc u
0
Ac
0
a1
an
I n 1
a2
Bc 0 0 1
T
y Cc z
u Fc z
Bc T 1B
Cc CT
n
Desired Char. Poly.: s i
Ac T AT
Fc ac1 a1 ac 2 a2 acn an
T
u Fc z FcT -1x
n
det sI A BF s i s n acn s n 1 ac 2 s ac1
i 1
Modern Control Systems
7
Transform to Controllable Form
ln T
T
l A
1
T n
T n 1
ln A
l1T
where L V 1
ln T
Coordinate Transform Matrix
1
z T x
x Tz
xR
U B AB An-1B
rank(U ) n, ( A, B) is controllable
v2 vn
Cc Cc1
n
y Cc x
Ac T 1 AT
x Rn
0
I n 1n1
Ac
a1 a2 an
Controllable Form:
x Ac x Bcu
T v1
x Ax Bu
y Cx
Ao Ac
T
Cc2
Ccn
Bo Cc
T
0
0
Bc
1
Co Bc
T
Bc T 1B
Cc T 1C
Modern Control Systems
8
Example
1 0
0
x
x u
2 2 1
Desired poles: 3 3 j
2
Desired Char. Polynomia
l : s 3 32 s 2 6s 18
(A, B) is in controllable from, we can derive the state feedback
gain from eq. (8.3)
F 18 2 6 2 16 4
16
4
U (s )
1
u Fx 16 4x
s -1
x2 s -1
2
Modern Control Systems
x1 1
y
2
9
Obtain the State Feedback Matrix by Comparing Coefficients
Plant:
x Ax Bu
y Cx
State Feedback:
x R n1
yR
uR
u(t ) Kx(t ) r(t )
K R1n
Closed Loop System: x ( A BK) x Br
Char. Equation:
sI A BK 0
Suppose that the system is controllable, i.e.
rank[ B AB A2 B An1B] n
Modern Control Systems
10
Then, for any desired pole locations:
1,, n
We can obtain the desired char. polynomial
( s 1 )( s n )
By controllability, there exists a state feedback matrix K, such that
sI A BK ( s 1 )( s n )
(8.4)
From (8.4), we can solve for the state feedback gain K.
Modern Control Systems
11
Example
Y ( s)
8
U ( s ) s( s 1)(s 10)
Plant:
State Feedback:
K k1 k2 k3
u(t ) Kx(t )
8k1
Y ( s)
3
R( s ) s (11 8k3 ) s 2 (10 8k 2 ) s 8k1
r
1
x1 k1 u 8
s 1 x3
1
s 1 x2
s 11
y
10
k3
k2
1
Fig. State Feedback Design Example
Modern Control Systems
12
Spec. for Step Response: Percent Overshoot 5%, Settling Rise time 5 sec.
n 8, 0.707
Desired pole locations: s1,2 8 j8 (dominantploes)
s3 40
From (8.4), we get
s 3 (11 8k3 ) s 2 (10 8k2 ) s 8k1
( s 8 j8)( s 8 j8)( s 40 )
(8.5)
By comparing coefficients on the both sides of 8.5), we obtain
k1 -640
k2 94.75
k3 5.625
K - 640 94.75 5.625
Modern Control Systems
13
Simulation Results
y (t )
1.2
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
Fig. Step response of above example
Modern Control Systems
14
Ackermann Formula for SISO Systems
Plant:
x Ax Bu
y Cx
State Feedback:
x R n1
yR
uR
u(t ) Kx(t ) r(t )
K R1n
Desired poles: 1,, n
n
Desired Char. Poly.: s i s n acn s n1 ac 2 s ac1
i 1
The Matrix Polynomial
n
c ( A) A i An acn An1 ac 2 A ac1I
i 1
Then the state feedback gain matrix is
K 0 0 1 B
2
n 1
AB A B A B
1
c ( A)
R1n
Modern Control Systems
15
Steady State Error
x (t ) Ax(t ) Br(t )
y (t ) Cx(t )
Error Variable
e(t ) r(t ) - y (t )
Lapalce Transform of the Error Variable
E ( s ) R( s ) Y ( s )
From (3.6)
E( s) R( s) [1 CsI A B]
1
By Final Value Theorem
ess lim e(t ) lim sE ( s)
t
s 0
lim sR ( s )[1- C ( sI-A)-1 B]
s 0
Modern Control Systems
16
Full-Order Observer Design
Full-Order Observer
Plant:
x Ax Bu,
y Cx
Suppose
xˆ
x(t0 ) x0
is the observer state
xˆ Axˆ Bu L y Cxˆ
A LC xˆ Bu Ly
L: Observer gain
Estimation error:
e x xˆ
Error Dynamics Equation:
e x xˆ Ax Bu A LC xˆ Bu Ly
A LC e
y Cx
Modern Control Systems
17
Hence if all the eigenvalues of (A-LC) lie in LHP, then the error system
e A LC e
is asy. stable and
e 0, as t
u(t )
B
x (t )
1
s
x(t )
y(t )
C
A
ey (t )
L
xˆ(t )
B
1
s
+
xˆ (t )
C
yˆ (t )
A
Fig. Full-Order Observer
Modern Control Systems
18
By duality between controllable from and obeservable form
Ao Ac
Bo Cc
we have the following theorem.
T
T
Co Bc
T
Theorem
Given
i , i 1,,n
( A,C) Observable
There exists a observer matrix, L, such that
detI A LC 1 2 n
Modern Control Systems
19
The eigenvalues of ( AT C T K ) can be assigned arbitrarily by
proper choice of K. Since
( AT C T K ), and ( A K T C )
have same eigenvalues, if we choose
L KT
then the eigenvalues of (A-LC) can be arbitrarily assigned.
Modern Control Systems
20
Separation Principle
Plant:
x Ax Bu
y Cx
State Feedback Law using estimated state: u Fxˆ
State Equation:
Observer:
x Ax Bu Ax BFxˆ Ax BFx BFe
(8.6)
A BF x BFe
xˆ Axˆ Bu L y Cxˆ Axˆ BFxˆ LC x xˆ
A BF LC xˆ Ly
Error Dynamics:
e x xˆ
e x xˆ A LC e
Modern Control Systems
(8.7)
21
Separation Principle (Cont.)
From (8.6) and (8.7), we obtain the overall state equation
x A BF
e 0
BF x
A LC e
~ x
A
e
(8.8)
Eigenvalues of the overall state equation (7.17)
BF
I A BF
~
I A
0
I A LC
I A BF I A LC
(8.9)
Equation (8.9) tells us that the eigenvalues of the observer-based state feedback
system is consisted of eigenvalues of (A-BF) and (A-LC).
Hence, the design of state feedback and observer gain can be done independently.
y1 C
y x
y2 I
Modern Control Systems
22
Observer-Based Control System
Plant:
x (t ) Ax(t ) Bu(t )
y (t ) Cx(t )
Observer:
xˆ Ax L( y Cxˆ ) Bu
( A LC ) xˆ LCx Bu
State Feedback Law: u(t ) Kxˆ (t ) r(t )
Modern Control Systems
23
r (t )
u(t )
x (t )
B
1
s
x(t )
y(t )
C
A
e(t )
L
B
xˆ(t )
1
s
xˆ (t )
C
yˆ (t )
A
K
Fig. Observer-based control system
Modern Control Systems
24
u(t )
r (t )
kc
x (t )
B
1
s
x(t )
y(t )
C
A
e(t )
L
B
xˆ(t )
1
s
xˆ (t )
C
yˆ (t )
A
K
Fig. Observer-based control system with compensating gain
Modern Control Systems
25
Reduced-Order Observer Design
Consider the n-dimensional dynamical equation
x (t ) Ax(t ) Bu(t )
(8.10a)
y (t ) Cx(t )
(8.10b)
A Rnn , B Rn p , C Rqn
Here we assume that C has full rank, that is, rank C =q. Then, there
exists a coordinate transformation x Px
x PAP1 x PBu
y CP1 x CQx I q
0x
which can be partitioned as
x1 A11 A12 x1 B1
x u
x2 A21 A22 2 B2
y I q 0x x1
Modern Control Systems
(8.11)
26
Since
y x1 , we have
y A11 y A12 x2 B1u
x2 A21x1 A22 x2 B2u
(8.12a)
(8.12b)
which become
x2 A22 x2 u
w A12 x2
where
u A21 y B2u
w y A11 y B1u
Observer
xˆ2 ( A22 L A12 ) xˆ2 L w u
Plant:
x (t ) Ax(t ) Bu(t )
(8.13a)
(8.13b)
y (t ) Cx(t )
Observer:
xˆ Ax L( y Cxˆ ) Bu
( A LC ) xˆ Ly Bu
Modern Control Systems
27
Note that u and w are function of known signals u and y. Now if the
dynamical equation above is observable, an estimator of x2 can be
constructed.
Theorem:
The pair {A, C} in (8.10) or, equivalently, the pair { A, C } in
(8.12) is observable if and only if the pair{ A22 , A12} in (8.13) is
observable.
Modern Control Systems
28
Let the estimate of x2 be
xˆ2 ( A22 L A12 ) xˆ2 L w u
(8.14)
Such that the eigenvalues of A22 L A12 can be arbitrarily assigned
by a proper choices of L . The substitution of w and u into (8.143)
yields
xˆ2 ( A22 L A12 ) xˆ2
L ( y A11 y B1u) ( A21 y B2u)
(8.15)
To eliminate the term of the derivative of y, by defining
z xˆ2 L y
Modern Control Systems
(8.16)
29
Using (8.15), then the derivative of (8.16) becomes
z ( A22 L A12 ) ( z L y )
( A21 L A11 ) y ( B2 L B1 )u
( A22 L A12 ) z ( B2 L B1 )u
( A22 L A12 ) L ( A21 L A11 )y
From (8.15), we see that
xˆ2 z L y
is an estimate of x2 .
Define the following matrices
Aˆ ( A22 L A12 ), Bˆ ( B2 L B1 ),
Jˆ ( A22 L A12 ) L ( A21 L A11 )
x1 0 y ˆ
xˆ Cz Dˆ y
xˆ2 z L y
Modern Control Systems
30
Reduced-Order Observer:
z Aˆ z Bˆ u Jˆy
xˆ Cˆ z Dˆ y
where
x1 0 y ˆ
xˆ Cz Dˆ y,
xˆ2 z L y
xˆ2 z L y
Aˆ ( A22 L A12 ), Bˆ ( B2 L B1 ),
Jˆ ( A L A ) L ( A L A )
22
12
21
11
Modern Control Systems
31
u(t )
B
x (t )
1
s
x(t )
y(t )
C
A
Jˆ
Bˆ
z(t )
1
s
Dˆ
z(t )
Cˆ
+
+
xˆ (t )
Aˆ
Fig. Reduced-Order Observer
Modern Control Systems
32
Define Error Variable
e x2 xˆ2
x2 ( z L y )
then we have
e x2 ( z L y ) x2 ( z L x1 )
A21x1 A22 x2 B2u ( A22 L A12 )( z L x1 )
( A21 L A11 ) x1 ( B2 L B1 )u L A11x1 L A12 x2 L B1u
( A22 L A12 )( x2 z L x1 )
( A22 L A12 )e
Modern Control Systems
33
Since the eigenvalues of ( A22 L A12 ) can be arbitrarily assigned, the
rate of e(t) approaching zero or, equivalently, the rate of
z Ly
approaching x2 can be determined by the designer. Now we
combine x1 with xˆ2 z L y to form
xˆ1 y
xˆ
ˆ
x
z
L
y
2
Then from
We get
x Px Q 1 x
y
ˆ
x Qx Q1 Q2
z
L
y
0 y
Iq
Q1 Q2
L I nq z
Modern Control Systems
34
How to transform state equation to the form of (8.11)
Consider the n-dimensional dynamical equation
x (t ) Ax(t ) Bu(t )
(8.17a)
y (t ) Cx(t )
A R
nn
,BR
n p
,CR
qn
(8.17b)
Here we assume that C has full rank, that is, rank C =q. Define
C
P
R
where R is any (n-q)n real constant matrix so that P is nonsingular.
Modern Control Systems
35
Compute the inverse of P as
Q P 1 Q1 Q2
where Q1 and Q2 are nq and n(n-q) matrices. Hence, we have
C
I n PQ Q1 Q2
R
CQ1 CQ2 I q
RQ1 RQ 2 0
Modern Control Systems
0
I n q
36
Now we transform (8.17) into (8.11),
by the equivalence transformation x
x PAP1 x PBu
Px
y CP1 x CQx I q
0x
which can be partitioned as
x1 A11 A12 x1 B1
x u
x2 A21 A22 2 B2
y I q 0x x1
Modern Control Systems
37
SISO State Space System
x Ax Bu
y Cx
x Rn
yR
uR
Integral Control:
z r y r Cx
Augmented Plant:
A Rnn , B Rn1, C R1n
z R
x Ax Bu
z Cx r
y Cx
x A 0 x B 0n1
z C 0 z 0 u 1 r
x
y C 0
z
Modern Control Systems
38
State Feedback Control Design with Integrator
u Kx Ke z K
x
K e
z
Closed-Loop System:
x A BK
z C
x
y C 0
z
BK e x 0n1
r
0 z 1
Modern Control Systems
39
Block diagram of the integral control system
r (t )
e(t )
1
s
z(t )
Ke
u(t )
B
x (t )
1
s
y(t )
x(t )
C
A
K
Fig.Block diagram of the integral control system
Modern Control Systems
40
Example
1
0
0
x
x u
3 5
1
y 1 0x
Spec. for Step Response: Percent Overshoot 10%, Settling time 0.5 sec.
0.59
n 8,
Desired poles: 8 j10.91
Desired Char. Polynomia
l : s 2 16s 183.1
State Feedback Design:
u(t ) Kx(t ) r(t )
Modern Control Systems
K k1 k2
41
1 0
0
x r
x A BK x Br
183.1 16 1
y Cx 1 0x
From the steady state analysis in Sec. 3.4
ess lim e(t ) lim sE ( s)
t
s 0
lim sR ( s )[1- C ( sI-A)-1 B]
s 0
1
(
R
(
s
)
)
1 C A BK B
s
1
0
1
0
1 1 0
183.1 16 1
0.995
1
Modern Control Systems
42
State Feedback Design with Error Integrator:
Desired poles: 8 j10.91, 100
Desired Char. Polynomia
l : ( s 2 16s 183.1)(s 100)
Closed-Loop System:
x1 0
1 0
0 x1 0
k1 k 2 K e
x
x 0 r
1 2
2 3 5 1
z
1 0
0 z 1
0
1
0 x1 0
(3 k1 ) (5 k2 ) K e x2 0 r
0
0 z 1
1
x1
y 1 0 0 x2
z
Modern Control Systems
(8.18)
43
From (8.18), we get the char. eq. of the closed-loop system is
s3 (5 k2 )s2 (3 k1 )s Ke 0
(8.19)
The desired char. eq. of the closed-loop system is
( s 100)(s2 16s 183.1) 0
(8.20)
By comparing coefficients on left hand sides of (8.19) and (8.20), we obtain
k1 1780.1
k2 111
K 1780.1 111
Ke 18310
Ke 18310
Modern Control Systems
44
Closed-Loop System:
0
1
0 x1 0
x1
x 1783.1 116 18310 x 0 r
2
2
0
0 z 1
z 1
y 1 0 0 0x
T ( s)
18310
Y ( s)
s 3 116s 2 1783.1s 18310 R( s)
Final Value Theorem
1
18310
lim y (t ) lim sT ( s ) lim 3
1
2
t
s 0
s
0
s
s 116 s 1783.1 s 18310
Steady State Error
ess 0
Modern Control Systems
45