Bionische Werkstoffe

Download Report

Transcript Bionische Werkstoffe

Klicken Sie, um das
Titelformat
zu bearbeiten
Man-made Cellulose
Fibres as
Reinforcement for Poly(lactic acid) (PLA)
Composites
International Congress
Innovative Natural Fibre Composites for
Industrial Applications
April 15th-18th 2009
Nina Graupner & Jörg Müssig
Hochschule Bremen / University of Applied Sciences
Faculty 5 / BIOMIMETICS
Biological Materials
1
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, April 16th, 2009
KlickenContent
Sie, um das
Titelformat
zu
bearbeiten
Use of natural fibres for industrial applications
Impact characteristics
Production of composites
Results
Fibre characteristics
Composite characteristics
Influence of processing parameters
Summary, conclusions & outlook
2
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Bio-based materials for industrial applications
Klicken Sie, um das
Biological
materials,
(region)
Titelformat
zuAmount
bearbeiten
procedure & application
Biodegradable plastics
(packaging industry)
60,000-70,000 t (Western Europe,
2007)
Biodegradable plastics
(permantent use)
30,000-40,000 t (Germany, 2007)
Compression moulding with natural
fibres, without cotton
(automobile industry)
29,000 t (Germany, 2005)
Compression moulding with cotton
fibres
(truck manufacturer)
79,000 t (Germany, 2003)
Natural fibre injection moulding and
extrusion
3,000-4,000 t (Europe, 2006)
(Gahle, 2008.-changed)
3
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
PLA/Kenaf – mobile phone
Klicken Sie, um das
Titelformat zu bearbeiten
+
(Nviroplast)
(NEC)
(anonym, 2006)
4
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Flax / PLA urn by Jakob Winter
Klicken
Sie,
um
das
(Satzung, Germany)
Titelformat zu bearbeiten
(Grashorn, 2007)
5
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
PLA/Kenaf spare tire cover made by Toyota
Klicken Sie, um das
Titelformat
zu(2003)
bearbeiten
Spare
tire cover in Toyota RAUM
made from kenaf fibre
reinforced PLA (based on sugar beet)
LCA on the spare tire cover showed reduced CO2 emissions
volume by as much as 90 % compared to conventional petroleumbased plastics
Index
100
Carbon neutral
effect
50
0
Petroleum based
plastics
6
Bioplastics
(Anonym, 2007 )
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Problem:
ImpactSie,
Klicken
um das
Titelformat zu bearbeiten
Bast fibre reinforced composites mostly display
high stiffness and tensile characteristics
But: impact characteristics are often the
limiting factors for a use as construction
materials due to the force elongation
characteristics of the bast fibres
7
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Load-strain
curves of
different
Klicken
Sie,
umcellulose
das fibres
Tensile
strength,
N/mm²
Titelformat zu bearbeitenHemp
Cotton
800
Lyocell
700
600
500
400
300
200
100
1
8
2
3
4
5
6
7
8
9
10
Elongation, %
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Impact strength
of different
composites
Klicken
Sie, um
das
Titelformat zu bearbeiten
9
Kind of fibre
Charpy impact
strength of
composites in
kJ/m²
Charpy impact
strength of neat
PLA in kJ/m²
Reference
40 % hemp
10
24
(Graupner, 2009)
40 % flax
11
15
(Oksman et al., 2003)
40 % kenaf
9
24
(Graupner, 2008)
40 % cotton
29
24
(Graupner, 2008)
40 % Lyocell
40
24
(Graupner, 2008)
30 % Cordenka
70
16
(Bax & Müssig, 2008)
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Lyocell as
additive for
impact
Klicken
Sie,
umimprovement
das
45
Charpy impact strength in kJ/m²
40
Unnotched Charpy impact strength
Titelformat
zu bearbeiten
35
30
25
20
Mixing 50 % hemp and 50 % Lyocell fibres increased the impact strength
15
clearly
10
5
(Graupner, 2009)
0
Pure PLA sample
10
Hemp-PLA
Lyocell-PLA
Hemp/Lyocell/PLA
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Production
of Lyocell/PLA
composites
Klicken
Sie, um
das
Titelformat
zu
bearbeiten
Reinforcement: 3 kinds of Lyocell fibres
(industrially gained fibres based on 100 %
cellulose, density: 1.5 g/cm3) produced by
Lenzing AG (Lenzing, Austria) in different
fineness (15.0, 6.7, 1.3 dtex)
(Topkapi)
Matrix: Nature Works™ PLA polymer
6202D, density: 1.24 g/cm3, melting
temperature 160-170°C, glass transition
temperature: 60-65°C
11
(Packaging International)
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Production
of semi-finished
parts
Klicken
Sie, um das
Titelformat zu bearbeiten
Production of multilayer webs and needle felts with fibre loads of
20 and 40 mass-% and a mass per unit area of 2000 g/m²
Single
layer web
Fibres
Positioned
multilayer Needle felt
web
Carding
machine
12
Cross layer
Needle felt
machine
(Müssig, 2001)
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Compression
moulding
Klicken Sie, um
das
Titelformat zu bearbeiten
Pre-cut parts of 300 x 250 mm2 were
compression moulded (Rucks,
Glauchau, Germany)
Pre-heating at 180°C for 10 min
Compression moulding with 3.2 MPa at
180°C for 10 min
Aluminium slats as spacer (thickness: 2
mm)
Demoulding at approx. 60°C
13
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: Characteristics of 3 kinds
Klicken
Sie,
um
das
of Lyocell fibres for composite production
Titelformat zu bearbeiten
14
Fibre
Tensile
width, µm strength,
N/mm²
Young´s
modulus,
N/mm²
Elongation
at break, %
Lyocell 1.3
10.5
46.7
5260
15.3
Lyocell 6.7
23.3
30.9
3744
13.0
Lyocell 15.0
32.5
23.0
3013
11.9
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: Tensile strength of composites
Klicken
Sie,
um
das
made from multilayer webs vs. needle felts
Tensile strength in N/mm²
80
Titelformat zu bearbeiten
Multilayer webs
70
Needle felts
Neat PLA
60
50
40
30
20
10
Influence of fibre fineness can be seen
Composites made from the needle felts show significant higher tensile
strength compared to composites made from the multilayer webs
0
40% Lyocell 1.3
15
40% Lyocell 6.7
40% Lyocell 15.0
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: Reduction of fibre mass
Klicken
Sie,
um
das
content of the multilayer webs
70
Titelformat
zu bearbeiten
Tensile strength
Multilayer webs, MD
Pure PLA sample
Tensile strength in N/mm²
60
50
40
30
20
10
Reduction of fibre mass content of the multilayer webs lead to
increased tensile strength of the composites
0
20% Lyocell 1.3
16
40% Lyocell 1.3
20% Lyocell 15.0
40% Lyocell 15.0
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: Impact strength of
Klicken
Sie,
um
das
composites made from the multilayer webs
45
Titelformat
zu bearbeiten
Unnotched Charpy impact strength
Multilayer webs, MD
Pure PLA sample
40
Charpy impact strength in kJ/m²
35
30
25
20
15
Increasing impact strength with raising fibre mass content
10
Composites with a low degree of compaction
5
No significant influences whether multilayer webs or needle felts were used
0
20% Lyocell 1.3-PLA
17
40% Lyocell 1.3-PLA
20% Lyocell 15.0-PLA
40% Lyocell 15.0
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: SEM micrographs of
Klicken
Sie,
um
tensile fractured surfaces
das
Titelformat zu bearbeiten
40 % Lyocell 1.3
multilayer web/PLA
composite
40 % Lyocell 1.3 needle
felt/PLA composite
20 % Lyocell 1.3
multilayer web/PLA
composite
18
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Results: Influence of process parameters
Klicken
Sie, web
um/ PLA
das
of 40 % Lyocell
multilayer
Titelformat zu bearbeiten
Tensile strength: 42 N/mm²
Tensile strength: 82 N/mm²
Young´s modulus: 4142 N/mm²
Young´s modulus: 6784 N/mm²
Impact strength: 33 kJ/m²
Impact strength: 40 kJ/m²
(Graupner, 2009)
- 10 min pre-heating, 180 °C
- 3 h pre-drying, 105 °C
- 10 min compression moulding 180 °C
- 20 min compression moulding 180 °C
Clear inluence on:
Process parameters
19
compaction
coating of fibres with matrix
interfacial interactions between fibres and matrix
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Summary, conclusions & outlook
Klicken Sie, um das
Lyocell fibres have great potential as reinforcement (high tensile
Titelformat
bearbeiten
strength
and high elongation zu
at break)
Lyocell and PLA fibre are processable with conventional textile and
formpressing techniques
Semi-finished textile products and process parameters have a clear
influence on the composite characteristics
Compression moulding times and temperatures as well as the
influence of pre-drying and pre-heating are important factors
Full potential of Lyocell fibres could not be achieved due to suboptimal
process parameters using multilayer webs
Needle felts lead to better composite characteristics than multilayer
webs
An optimised production leads to Lyocell/PLA composites which show
high impact properties combined with good tensile characteristics
20
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Klicken Sie, um das
Titelformat zu bearbeiten
Nina Graupner & Jörg Müssig
University of Applied Sciences
Faculty 5 / BIOMIMETICS
Biological Materials
email: [email protected]
21
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
Acknowledgements
Klicken Sie,
um das
Titelformat
zu bearbeiten
We thank
…
Dr. Sames (Lenzing AG, Lenzing, Austria) for supplying
Lyocell fibres
Dipl.-Ing. C. Grashorn (IST Ficotex, Bremen, Germany) for
supplying PLA
Prof. Dr. A. S. Herrmann (Faserinstitut Bremen e.V., Bremen
Germany) and G. Gödecke (NAFGO GmbH, Neerstedt,
Germany) for support in semi-finished product and composite
production
the students of the course Materials Research at University of
Applied Sciences Bremen – Biomimetics for measuring tensile
and impact strength of needle felt reinforced composites
22
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009
References
Klicken Sie, um das
Titelformat zu bearbeiten
Anonym (2006): Complete mobile phone housing made of PLA. In: Bioplastics, Vol. 1, (06/01), p. 18 – 19
Anonym (2007): Bioplastics in Automotive Applications. Bioplastics Magazine, Vol. 2 (1), p. 14-18
Bax, B., Müssig, J. (2008): Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites
Science and Technology 2008; 68: 1601-1607
Gahle, C. (2008): Nova-Institut: Biowerkstoffe – Werkstoffe mit Zukunft: Aktuelle Marktdaten und attraktive
Produktbeispiele. In: Biowerkstoff Report, Okt., Nov., Dez., p. 26
Grashorn, C. (2007): Erstes Serienprodukt aus naturfaserverstärktem PLA im Spritzguss. In: Nova Institut, Hürth,
Germany; 5. N-FibreBase Kongress. Hürth 21st-22nd Mai 2007. –in German
Graupner, N. (2008): Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA)
composites. Journal of Materials Science 2008; 43 (15): 5222-5229
Graupner, N. (2009): Improvement of the Mechanical Properties of Biodegradable Hemp Fibre Reinforced Poly(lactic
acid) (PLA) Composites by the Admixture of Man-made Cellulose Fibres. Journal of Composite Materials 2009;
Vol. 43 (6): 689-702
Müssig, J. (2001): Untersuchung der Eignung heimischer Pflanzenfasern für die Herstellung von naturfaserverstärkten
Duroplasten – vom Anbau zum Verbundwerkstoff -. Fortschritt-Berichte VDI Reihe 5 Nr. 630. Düsseldorf: VDI
Verlag 2001, (ISBN 3-18-363005-2)
Nviroplast:http://www.nviroplast.com/images/corn2resin.jpg&imgrefurl, 01.04.2009
NEC:http://i.treehugger.com/files/kenaf_phone.jpg&imgrefurl, 01.04.2009
Oksman, K., Skrifvars, M., Selin, J.-F. (2003): Natural fibres as reinforcement in polylactid acid (PLA) composites.
Composites Science and Technology, 63: 1317-1324
Packaging International:http://www.packaging-int.com/images/companies/2017/veriplastimage2.jpg, 01.04.2009
Topkapi:http://www.topkapi-iplik.com.tr/images/prod_images/lyo3.jpg, 01.04.2009
23
Nina Graupner & Jörg Müssig / Lyocell/PLA Composites, 2009