Transcript Document
Optically Detected Magnetic Resonance (ODMR) and its Application to p-Conjugated Materials and Organic Light-Emitting Devices (OLEDs) Joseph Shinar March 30, 2009 [email protected] 1 ODMR in One Sentence: Monitor mwave-induced changes in an optical quantity at the field for resonance. Since “optical quantity” can mean different quantities, ODMR is an umbrella term, meaning we can measure, e.g., * Photoluminescence (PL)-detected magnetic resonance (PLDMR) * Electroluminescence (EL)-detected magnetic resonance (ELDMR) * Absorption-detected magnetic resonance (ADMR) * Photoinduced absorption (PA)-detected magnetic resonance (PADMR) 2 Similarly, Electrically Detected Magnetic Resonance (EDMR) in One Sentence: Monitor mwave-induced changes in an electrical quantity at the field for resonance. And similarly,, EDMR is an umbrella term, e.g., * Current or Conductivity-detected magnetic resonance (CDMR) * Photoconductivity-detected magnetic resonance (PCDMR) 3 Now consider basic electronic processes in an organic semiconductor, i.e., a p-conjugated material. TRIPLET (EXCITON) MANIFOLD EXCITONS SINGLET (EXCITON) MANIFOLD EXCITONS POLARON MANIFOLD m1Ag Charge Transfer m3Ag 1 3 Bu ISC(a) T 11Bu p+ pP2 absorption knr kr (PL 0-0 ) Phosphorescence0-0 P1 11Ag GROUND STATE (a) Intersystem Crossing 4 A Typical PLDMR Spectrometer: DATA AQUISITION LOCK IN DETECTOR (Si) MAGNET CONTROL PL MICROWAVE MODULATION Ar+ LASER (351 nm - 515 nm) CRYOSTAT (He) 10 K - 300 K MICROWAVE CAVITY 5 The positive (PL-enhancing) spin 1/2 polaron pair PLDMR at g = 2 R S n The positive PLDMR in poly(3-hexyl thiophene) (P3HT) and poly(3-dodecyl thiophene) (P3DT) films and solutions. L. S. Swanson et al., Phys. Rev. Lett. 65, 1140 (1990). 6 The full-field (Dm = 1) triplet powder-pattern PLDMR. R S 7 n And the half-field (Dm = 2) triplet powder-pattern PLDMR… R S n 8 R' Similar Polaron pair PLDMR at g = 2 of m-LPPP and PHP C6H13 R 16 n C6H13 14 DIPL/IPL of 12 10 -4 10 D PL/PL R R' • Photo-oxidized m-LPPP 8 DIPL/IPL = 1.4 x 10-3 6 4 • 2 m-LPPP DIPL/IPL = 3.3 x 10-4 0 3300 3320 3340 3360 3380 M agnetic Field (G ) • PHP DIPL/IPL = 8 x 10-5 E. J. W. List et al., Appl. Phys. Lett. 76, 2083 (2000). 9 PADMR of m-LPPP films [scan probe energy at constant magnetic field; monitor microwave induced changes in the photoinduced absorption (PA)]. 12 R' -4 10 (-DT/T) 10 8 6 C6H13 4 R -6 10 (- T/T) 2 0 -2 -4 -6 -8 -10 n C6H13 R P2 0-1 P2 0-0 T1-->Tn R' 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 Energy (eV) 10 1st Expt: nmw-dependence of Regular PLDMR of MEH-PPV -3 1.0x10 -4 8.0x10 1.0x10 -4 -4 6.0x10 -4 4.0x10 DPL/PL DPL/PL 8.0x10 -3 -4 2.0x10 0.0 0.01 6.0x10 -4 4.0x10 -4 2.0x10 -4 0.0 3.28 3.30 3.32 3.34 3.36 3.38 Magnetic Field(k gaus s) 0.1 1 10 Single modulation PLDMR DPL/PL vs the microwave modulation frequency fM. The dashed line is a single lifetime fit w/ t = 38 ms; the solid line is a twolifetime fit w/ t1= 24 ms, t2= 244 ms. f M (kHz) 11 Note: negative carrier electron (e-) negative polaron (p-) radical anion positive carrier hole (h+) positive polaron (p-) radical cation 12 Monomolecular nonradiative quenching processes Quenching of excited states [singlet excitons (SEs) and triplet excitons (TEs)] by the cathode & anode. Electric field-induced quenching (via dissociation) of SEs (and TEs?). Quenching by impurities. 13 Bimolecular nonradiative quenching processes Quenching of SEs by TEs and by polarons Quenching of TEs by polarons. 14 Other results that bear on quenching mechanisms 1. Double modulation (DM) PLDMR (DM-PLDMR) 2. Joint thermally-stimulated luminescence (TSL) + PLDMR 3. PLDMR of the small molecules tris(8-hydroxy quinoline) Al (Alq3) & 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) Alq3 N O N Al O O N DPVBi 15 Double Modulation PLDMR (DM-PLDMR) [M. K. Lee et al., Phys. Rev. Lett. 94, 137403 (2005) M. Segal et al., Phys. Rev. B 71, 245201 (2005)] Modulate the laser power exciting the sample at nlaser. Monitor, via output of Lockin amplifier #2, the PL that is faster than nLaser [PL(nLaserPR)] Detect the PLDMR of PL(nLaser) via Lockin #1, referenced by the microwaves, which are modulated at nmw. 16 17 Any contribution to the PL from delayed PL with lifetime t > 1/fL is filtered out of the output by Lockin #2. That output is connected to Lockin #1, synchronized to fM = 200 Hz. As fL increases to 100 kHz, the spin 1/2 PLDMR due to delayed PL of polaron pairs with t 10 ms should decrease to zero. In contrast, the PLDMR due to quenching should remain essentially unchanged. 18 Note: DM-PLDMR vs wL = 2pfL , which is a measurement in the frequency domain, is equivalent to time-resolved PLDMR vs t, which is a measurement in the time domain. 19 2nd Expt: DM-PLDMR of MEH-PPV vs nLaser Dashed line: Behavior predicted by the delayed PL model. Behavior predicted by the quenching model is flat, as observed. 20 2. New combined thermally-stimulated luminescence (TSL) & PLDMR study of a PPV derivative Note that TSL is due to photogenerated polarons which are trapped at low temperature, detrapped by warming up, find each other, & recombine. Some of those which recombine to SEs yield the TSL. In other words, the TSL is delayed PL due to nongeminate polaron recombination – the very mechanism invoked by Wohlgenannt & Vardeny as the origin of the positive spin ½ PLDMR & negative spin ½ PADMR. 21 Consider poly[ 2-(N-carbazolyl)-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (CzEh-PPV) O N n Absorbance &PL (arb. unit) CzEh-PPV PL &Absorption 1.0 Cz Absorption PL ex = 458 nm 0.5 0.0 300 400 500 600 700 800 Wavelength (nm) 22 TSL & PLDMR of CzEh-PPV TSL (arb. units) 3 Eexe = 3.96 eV Eexe = 3.42 eV Eexe = 3.06 eV Eexe = 2.84 eV 2 1 0 0 50 100 150 200 250 Temperature (K) 23 Absorbance & TSL (arb. units) Note: Rise in TSL is not due to increased absorption 2.0 Absorbance Integral TSL 1.5 1.0 0.5 0.0 2.5 3.0 3.5 4.0 Energy (eV) 24 2E-3 DPL/PL DPL/PL 1E-3 0E-3 3280 exc = 3320 458 nm 3360 Spin 1/2 3E-4 Spin = 1/2 2E-4 1E-4 0E-4 3400 3280 3320 3360 3400 351 + 363 nm 25 4 4 10 (DPL/PL) 3 500 Hz 2 kHz 217 Hz 6.5 kHz 87 Hz 10 kHz 2 1 0 3300 3330 3360 3390 H (Gauss) UV-excited spin-1/2 PDLMR at different microwave modulation frequencies. Note the growth of the quenching resonance @ lower microwave chopping frequencies. 26 3. PLDMR of Alq3 & DPVBi N O N Al O N O 10 10.0 20K 100K 150K 250K 10 (DPL/PL) 6.0 4.0 1 5 5 10 (DPL/PL) 8.0 2.0 20K 0.0 3280 3300 3320 3340 3360 3380 3400 0.1 1 Magnetic Field (G) 10 100 Laser Power (mW) Behavior similar to positive spin 1/2 PLDMR in polymers – cannot be due to delayed PL mechanism. G. Li et al., Phys. Rev. B 69, 165311 (2004). 27 N O 10 Spin 1/2 film Spin 1/2 powder N Al O N O 5 10 (DPL/PL) 8 6 Film Powder 4 2 0 3280 3300 3320 3340 3360 3380 3400 H (Gauss) 28 N O N 3.0 2.5 1.2 t = 2.7 ms 2.0 10 (DPL/PL) 1.5 1.0 4 4 10 (DPL/PL) 1.4 Spin 1/2 film t = 2.7 ms 1.0 0.0 10 Modulation Frequency (Hz) O Spin 1/2 Powder t = 6.1 ms t = 6.1 ms 0.4 0.0 10 10000 N 0.6 0.2 1000 O 0.8 0.5 100 Al 10000 1000 100 Modulation Frequency (Hz) 29 N O N O N O 7E-5 2.0 FFpwd Alq 3 HFpwd 20K 6E-5 1.0 DPL/PL 5E-5 0.0 5 10 (DPL/PL) Al -1.0 4E-5 3E-5 2E-5 1E-5 0E-5 -2.0 2800 3200 3600 H (Gauss) 4000 1600 1620 1640 1660 H (Gauss) 1680 30 1700 N O N 2.5 2.0 1.5 1.0 t = 11 ms 1.4 4 4 10 | DPL/PL | 3.0 1.6 Powder FF FRODMR t = 11 ms 10 (DPL/PL) 3.5 1.2 N O Powder HF FRODMR t = 5.2 ms t = 5.2 ms 0.8 0.6 0.0 0.4 100 1000 10000 Modulation Frequency (Hz) O 1.0 0.5 10 Al 10 10000 1000 100 Modulation Frequency (Hz) 31 N O N 2.0 7.0 10 (DPL/PL) Powder Film 5 3.0 5 10 (DPL/PL) 5.0 4.0 2.0 -1.0 -2.0 N O Dm s = 2 powder 6.0 0.0 O Dm s = 2 film FFpwd (film) 1.0 Al 1.0 2800 3200 3600 H (Gauss) 4000 0.0 1600 1620 1640 1660 H (Gauss) 1680 32 1700 ITO/ TPD/Alq3/buffer/Al ELDMR EDMR AlOx buffer CsF buffer G. Li et al., Phys. Rev. B 69, 165311 (2004); Phys. Rev. B 71, 235211 (2005). 33 Summary ODMR is a powerful tool to study the dynamics of polarons, bipolarons, trions, TEs, and SEs in p-conjugated materials & OLEDs. 34