Transcript Slide 1

Canadian Bioinformatics Workshops
www.bioinformatics.ca
Contains material
by Wyeth
Wasserman,
William Noble,
Michael Hoffman,
and Tim Bailey
Module #: Title of Module
2
Module 3
Transcription Factor Regulatory Analysis
Michael M. Hoffman
An image to represent your workshop or module
Overview
Part 1: Overview of transcription
Part 2: Prediction of transcription factor binding sites
using binding profiles (“Discrimination”)
Part 3: Detection of novel motifs (TFBS) overrepresented in regulatory regions
Part 4: Interrogation of sets of co-expressed genes or
ChIP-seq regions to identify mediating transcription
factors
Part 5: Gene regulatory networks
Module 3
4
bioinformatics.ca
Part 1
Introduction to transcription
in eukaryotic cells
Module 3
5
bioinformatics.ca
Transcription over-simplified
Three-step Process:
1. TF binds to TFBS (DNA)
2. TF catalyzes recruitment of
polymerase II complex
3. Production of RNA from
transcription start site (TSS)
TF
Pol-II
TFBS
TATA
TSS
6
Anatomy of transcriptional regulation
WARNING: Terms vary widely in meaning between scientists
Core promoter/initiation region (Inr)
Distal regulatory region
TFBS
TFBS
Proximal regulatory region
TFBS
TFBS
TFBS
TATA
TSS
EXON
Distal regulatory region
TFBS
TFBS
EXON
• Core promoter – Sufficient for initiation of
transcription; orientation dependent
• TSS – transcription start site
– Often really a transcription start region
• TFBS – single transcription factor binding site
• Regulatory regions
•
•
•
•
Proximal/Distal – vague reference to distance from TSS
May be positive (enhancing) or negative (repressing)
Orientation independent (generally)
Modules – Sets of TFBS within a region that function together
• Transcriptional unit
• DNA sequence transcribed as a single polycistronic mRNA
Module 3
7
bioinformatics.ca
Complexity in transcription
Chromatin
Distal enhancer
Proximal enhancer
Core Promoter
Distal enhancer
8
Laboratory data on regulatory regions
• Promoters
•
•
•
•
RNA 5' ends (CAGE)
Epigenetic marks (ChIP-seq)
Polymerase complex (ChIP-seq)
RNA (RNA-seq)
• TFBSs
• TFs (ChIP-seq)
• Regulatory regions
• Co-activators (ChIP-seq)
• Epigenetic marks (ChIP-seq)
• Enhancer RNA (RNA-seq)
Module 3
bioinformatics.ca
Accessing laboratory data
• UCSC Genome Browser
• http://genome.ucsc.edu
• Gene Expression Omnibus (GEO)
• http://www.ncbi.nlm.nih.gov/geo/
• ENCODE Project
• http://encodeproject.org/
• Roadmap Epigenomics
• http://www.roadmapepigenomics.org/
• oRegAnno
• http://www.oreganno.org
Module 3
bioinformatics.ca
Overview
Part 1: Overview of transcription
Part 2: Prediction of transcription factor binding sites
using binding profiles (“Discrimination”)
Part 3: Detection of novel motifs (TFBS) overrepresented in regulatory regions
Part 4: Interrogation of sets of co-expressed genes or
ChIP-seq regions to identify mediating transcription
factors
Part 5: Gene regulatory networks
Module 3
11
bioinformatics.ca
Part 2
Prediction of
TF binding sites
Teaching a computer
to find TFBS…
Module 3
12
bioinformatics.ca
Representing binding sites for a TF
• Single site
• AAGTTAATGA
• Set of sites, represented as a consensus
• VDRTWRWWSHD (IUPAC degenerate DNA)
• Set of sites, represented as a
position frequency matrix (PFM)
A
C
G
T
14 16 4 0 1 19 20 1
3 0 0 0 0 0 0 0
4 3 17 0 0 2 0 0
0 2 0 21 20 0 1 20
4 13 4 4 13 12 3
7 3 1 0 3 1 12
9 1 3 0 5 2 2
1 4 13 17 0 6 4
Logo – A graphical
representation of frequency
matrix. Y-axis is information
content , which reflects the
strength of the pattern in each
column of the matrix
Module 3
Set of
binding
sites
AAGTTAATGA
CAGTTAATAA
GAGTTAAACA
CAGTTAATTA
GAGTTAATAA
CAGTTATTCA
GAGTTAATAA
CAGTTAATCA
AGATTAAAGA
AAGTTAACGA
AGGTTAACGA
ATGTTGATGA
AAGTTAATGA
AAGTTAACGA
AAATTAATGA
GAGTTAATGA
AAGTTAATCA
AAGTTGATGA
AAATTAATGA
ATGTTAATGA
AAGTAAATGA
AAGTTAATGA
AAGTTAATGA
AAATTAATGA
AAGTTAATGA
AAGTTAATGA
AAGTTAATGA
AAGTTAATGA13
bioinformatics.ca
Conversion of PFMs
to position specific scoring matrices (PSSM)
Add the following features to the matrix profile:
1. Correct for nucleotide frequencies in genome
2. Weight for the confidence (depth) in the pattern
3. Convert to log-scale probability for easy arithmetic
PSSM
PFM
A
C
G
T
5
0
0
0
0
2
3
0
1
2
1
1
0
4
0
1
0
0
4
1
A
C
G
T
1.6
-1.7
-1.7
-1.7
-1.7
0.5
1.0
-1.7
-0.2
0.5
-0.2
-0.2
-1.7
1.3
-1.7
-0.2
-1.7
-1.7
1.3
-0.2
TGCTG = 0.9
Module 3
bioinformatics.ca14
Detecting binding sites in a single sequence
Raw scores
Sp1
ACCCTCCCCAGGGGCGGGGGGCGGTGGCCAGGACGGTAGCTCC
A
C
G
T
[-0.2284 0.4368
[-0.2284 -0.2284
[ 1.2348 1.2348
[ 0.4368 -0.2284
-1.5
-1.5
2.1222
-1.5
-1.5
-1.5
-1.5 1.5128
2.1222 0.4368
-1.5 -0.2284
0.4368
-1.5
-1.5 -0.2284
1.2348 1.5128
0.4368 0.4368
-1.5 -0.2284
-1.5 -0.2284
1.7457 1.7457
0.4368
-1.5
0.4368
-1.5
-1.5
1.7457
]
]
]
]
Abs_score = 13.4 (sum of column scores)
A
C
G
T
[-0.2284 0.4368
[-0.2284 -0.2284
[ 1.2348 1.2348
[ 0.4368 -0.2284
-1.5
-1.5
2.1222
-1.5
-1.5
-1.5
-1.5 1.5128
2.1222 0.4368
-1.5 -0.2284
0.4368
-1.5
-1.5 -0.2284
1.2348 1.5128
0.4368 0.4368
Empirical p-value Scores
-1.5 -0.2284
-1.5 -0.2284
1.7457 1.7457
0.4368
-1.5
0.4368
-1.5
-1.5
1.7457
]
]
]
]
Max_score = 15.2 (sum of highest column scores)
A
C
G
T
[-0.2284 0.4368
[-0.2284 -0.2284
[ 1.2348 1.2348
[ 0.4368 -0.2284
-1.5
-1.5
2.1222
-1.5
-1.5
-1.5
-1.5 1.5128
2.1222 0.4368
-1.5 -0.2284
0.4368
-1.5
-1.5 -0.2284
1.2348 1.5128
0.4368 0.4368
-1.5 -0.2284
-1.5 -0.2284
1.7457 1.7457
0.4368
-1.5
0.4368
-1.5
-1.5
1.7457
Min_score = -10.3 (sum of lowest column scores)
Abs_score - Min_score
×100 %
Max_score - Min_score
13.4 - (-10.3)
=
×100% = 93%
15.2 - (-10.3)
Rel_score =
Module 3
]
]
]
]
0.3
Area to right of value
Area under entire curve
Frequency
Relative scores
0.2
0.1
0.0
0.0
0.2
0.4
0.6
0.8 1.0
Relative score
15
bioinformatics.ca
JASPAR:
An open-access database
of TF binding profiles
http://jaspar.genereg.net
16
The Good…
• Tronche (1997) tested 50 predicted HNF1 TFBS
using an in vitro binding test and found that 96%
of the predicted sites were bound!
BINDING
ENERGY
• Stormo and Fields (1998) found in detailed
biochemical studies that the best weight matrices
produce scores highly correlated with in vitro
binding energy
PSSM SCORE
Module 3
17
bioinformatics.ca
…the Bad…
• Fickett (1995) found that a profile for the MyoD
TF made predictions at a rate of 1 per ~500bp of
human DNA sequence
– This corresponds to an average of 20 sites / gene
(assuming 10,000 bp as average gene size)
Module 3
18
bioinformatics.ca
…and the Ugly!
Human Cardiac a-Actin gene analyzed
with a set of profiles
(each line represents a TFBS prediction)
Futility conjuncture:
TFBS predictions are
almost always wrong
Red boxes are protein coding exons TFBS predictions excluded in this analysis
Module 3
19
bioinformatics.ca
More stringency doesn’t help
P
P
V
THRESHOLD
• Counter to intuition, the ratio of true positives to
predictions fails to improve for “stringent”
thresholds
• For most predictive models this ratio would increase
• Why?
• True binding sites are defined by properties not incorporated
into the profile scores - above some threshold all sites could
be bound if present in the right setting
Module 3
20
bioinformatics.ca
Section 2
What have we learned?
• PSSMs accurately reflect in vitro binding properties of DNA
binding proteins
• Suitable binding sites occur at a rate far too frequent to
reflect in vivo function
• Bioinformatics methods that use PSSMs for binding site
studies must incorporate additional information to
enhance specificity
– Unfiltered predictions are too noisy for most applications
– Organisms with short regulatory sequences are less problematic (e.g.
yeast and E.coli)
Module 3
21
bioinformatics.ca
Overview
Part 1: Overview of transcription
Part 2: Prediction of transcription factor binding sites
using binding profiles (“Discrimination”)
Part 3: Detection of novel motifs (TFBS) overrepresented in regulatory regions
Part 4: Interrogation of sets of co-expressed genes or
ChIP-seq regions to identify mediating transcription
factors
Part 5: Gene regulatory networks
Module 3
22
bioinformatics.ca
Part 3:
de novo Discovery
of TF Binding Sites
23
Motif discovery problem
• Given sequences
seq. 1
seq. 2
seq. 3
• Find motif
IGRGGFGEVY at position 515
LGEGCFGQVV at position 430
VGSGGFGQVY at position 682
Module 3
seq. 1
seq. 2
seq. 3
bioinformatics.ca
Motif discovery problem
• Given:
– a sequence or family of sequences.
• Find:
– the number of motifs
– the width of each motif
– the locations of motif occurrences
Module 3
bioinformatics.ca
Why is this hard?
• Input sequences are long
(thousands or millions of
residues).
• Motif may be subtle
– Instances are short.
– Instances are only slightly
similar.
?
?
Module 3
bioinformatics.ca
TFBS motif discovery example
We are given a set of promoters from
co-regulated genes.
TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
…HIS7
ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
…ARO4
CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
…ILV6
TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
…THR4
ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
…ARO1
ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
…HOM2
GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA
…PRO3
Module 3
bioinformatics.ca
TFBS motif discovery example
An unknown transcription factor binds to positions
unknown to us, on either DNA strand.
5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
…HIS7
5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
…ARO4
5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
…ILV6
5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
…THR4
5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
…ARO1
5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
…HOM2
5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA
…PRO3
Module 3
bioinformatics.ca
TFBS motif discovery example
The DNA binding motif of the
transcription factor can be
described by a position-specific
scoring matrix (PSSM).
5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
…HIS7
5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
…ARO4
5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
…ILV6
5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
…THR4
5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
…ARO1
5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
…HOM2
5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA
…PRO3
Module 3
bioinformatics.ca
TFBS motif discovery example
The sequence motif discovery problem is to discover the
sites (or the motif) given just the sequences.
5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
…HIS7
5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
…ARO4
5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
…ILV6
5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
…THR4
5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
…ARO1
5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
…HOM2
5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA
…PRO3
Module 3
bioinformatics.ca
Gibbs sampling
Alternating approach
1. Guess an initial weight matrix
2. Use weight matrix to predict instances in the input
sequences
3. Use instances to predict a weight matrix
4. Repeat 2 & 3 until satisfied.
Module 3
bioinformatics.ca
Initialization
• Randomly guess an instance si from each of t input
sequences {S1, ..., St}.
sequence 1
sequence 2
sequence 3
sequence 4
ACAGTGT
TTAGACC
GTGACCA
ACCCAGG
CAGGTTT
sequence 5
Module 3
bioinformatics.ca
Gibbs sampler
• Initially: randomly guess an instance si from each of t
input sequences {S1, ..., St}.
• Steps 2 & 3 (search):
– Throw away an instance si: remaining (t - 1) instances define
weight matrix.
– Weight matrix defines instance probability at each position of
input string Si
– Pick new si according to probability distribution
• Return highest-scoring motif seen
Module 3
bioinformatics.ca
Sampler step illustration:
ACAGTGT
TAGGCGT
ACACCGT
???????
CAGGTTT
ACAGTGT
TAGGCGT
ACACCGT
ACGCCGT
CAGGTTT
A
C
G
T
.45 .45 .45 .05 .05 .05 .05
.25 .45 .05 .25 .45 .05 .05
.05 .05 .45 .65 .05 .65 .05
.25 .05 .05 .05 .45 .25 .85
sequence 4
ACGCCGT:20%
11%
ACGGCGT:52%
TOMTOM predicts which protein(s) may
bind a DNA motif
Query motif
Alignment to
Matching Motif
Motif Databases
TOMTOM
•TOMTOM compares the query motif
against all motifs in databases of known
motifs (e.g., Transfac).
•TOMTOM reports all statistically
significant matches.
Overview
Part 1: Overview of transcription
Part 2: Prediction of transcription factor binding sites
using binding profiles (“Discrimination”)
Part 3: Detection of novel motifs (TFBS) overrepresented in regulatory regions
Part 4: Interrogation of sets of co-expressed genes or
ChIP-seq regions to identify mediating transcription
factors
Part 5: Gene regulatory networks
Module 3
37
bioinformatics.ca
Part 4:
Inferring regulating TFs for
sets of co-expressed genes
38
Deciphering regulation of coexpressed genes
Co-Expressed
Negative Controls
39
TFBS enrichment
• Akin to methods for GO term enrichment/overrepresentation analysis, we seek to determine if a set of
co-expressed genes contains an over-abundance of
predicted binding sites for a known TF
Module 3
40
bioinformatics.ca
Two examples of TFBS enrichment
Foreground
Foreground
More Total TFBS
More Genes with TFBS
Background
Background
41
Statistical methods for identifying enriched TFBS
• Binomial test (Z scores)
– Based on the number of occurrences of the TFBS relative to background
– Normalized for sequence length
– Simple binomial distribution model
• Fisher’s exact test probability scores
– Based on the number of genes containing the TFBS relative to background
– Hypergeometric probability distribution
Module 3
42
bioinformatics.ca
oPOSSUM procedure
Set of coexpressed
genes
Automated
sequence retrieval
from Ensembl
Phylogenetic
Footprinting
ORCA
Putative
mediating
transcription
factors
Module 3
Statistical
significance of
binding sites
Detection of
transcription factor
binding sites
43
bioinformatics.ca
Validation using reference gene sets
A. Muscle-specific (23 input; 16 analyzed)
Rank
Z-score
B. Liver-specific (20 input; 12 analyzed)
Fisher
Rank
Z-score
Fisher
SRF
1
21.41
1.18e-02
HNF-1
1
38.21
8.83e-08
MEF2
2
18.12
8.05e-04
HLF
2
11.00
9.50e-03
c-MYB_1
3
14.41
1.25e-03
Sox-5
3
9.822
1.22e-01
Myf
4
13.54
3.83e-03
FREAC-4
4
7.101
1.60e-01
TEF-1
5
11.22
2.87e-03
HNF-3beta
5
4.494
4.66e-02
deltaEF1
6
10.88
1.09e-02
SOX17
6
4.229
4.20e-01
S8
7
5.874
2.93e-01
Yin-Yang
7
4.070
1.16e-01
Irf-1
8
5.245
2.63e-01
S8
8
3.821
1.61e-02
Thing1-E47
9
4.485
4.97e-02
Irf-1
9
3.477
1.69e-01
HNF-1
10
3.353
2.93e-01
COUP-TF
10
3.286
2.97e-01
TFs with experimentally-verified sites in the reference sets.
Module 3
44
bioinformatics.ca
oPOSSUM Server
45
Structurally-related TFs with
Indistinguishable TFBS
• Most structurally
related TFs bind to
highly similar DNA
motifs
– Zn-finger family is a
big exception
Module 3
46
bioinformatics.ca
EXAMPLE
Ets Family
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
EG232974
EG432800
Ehf
Elf1
Elf2
Elf3
Elf4
Elf5
Elk1
Elk3
Elk4
Erf
Erg
Ets1
Ets2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Etv1
Etv2
Etv3
Etv3l
Etv4
Etv5
Etv6
Fev
Fli1
Gabpa
LOC100
LOC100
factor)
LOC634494
Sfpi1
Spdef
Spib
Spic
• How to pick which one?
– At this stage there are TF
catalogs coming that will
be coupled to
characteristics.
• Candidate gene
prioritization software
can be used (if not
tightly coupled to
chromosomal region)
such as TOPPGENE
47
Overview
Part 1: Overview of transcription
Part 2: Prediction of transcription factor binding sites
using binding profiles (“Discrimination”)
Part 3: Detection of novel motifs (TFBS) overrepresented in regulatory regions
Part 4: Interrogation of sets of co-expressed genes or
ChIP-seq regions to identify mediating transcription
factors
Part 5: Gene regulatory networks
Module 3
48
bioinformatics.ca
Part 5
“Gene Regulation Networks”
Module 3
49
bioinformatics.ca
Composite scoring
using multiple data classes
• Goal: Predict active regulatory regions in a given cell or
tissue based on the integrated analysis of diverse
genome-scale data such as epigenomic marks, chromatin
accessibility, TF binding.
Example:
• Segway http://pmgenomics.ca/proj/segway/
Module 3
bioinformatics.ca
How does Segway work?
• Goal is to segment the genome into sub-classes. In each
case, the tools identify certain data properties that
subsets of the genome. Based on the groupings, the
presence of known features (e.g. transcription start
regions) is scored to suggest the functional meaning of
the classes established.
• Require specific data for a cell type or tissue, making
them well-suited for ENCODE target cells. Unclear how
long until large-scale data available beyond ENCODE cells.
Module 3
bioinformatics.ca
GREAT
• GREAT predicts functions of cis-regulatory regions.
• Many coding genes are well annotated with their
biological functions. Non-coding regions typically lack
such annotation. GREAT assigns biological meaning to a
set of non-coding genomic regions by analyzing the
annotations of the nearby genes. Thus, it is particularly
useful in studying functions of sets of non-coding
genomic regions.
Module 3
bioinformatics.ca
GREAT input
• Takes as input a BED file indicating regions of genome
• Gives as output multiple enrichment measures of
attributes associated with either the genomic regions
themselves, or the proximal genes
Module 3
bioinformatics.ca
Sample GREAT output
Module 3
bioinformatics.ca
More sample GREAT output
Module 3
bioinformatics.ca
TF interactions
• TF-TF interactions provide greater diversity of potential
patterns of expression.
• Much work has focused on determining which sets of
TFBS tend to co-occur (e.g. oPOSSUM Anchor Site
Analysis)
• The precise spatial patterns between TFBS may reveal
more reliable relationships
• SPAMO within the MEME Suite provides this function
Module 3
bioinformatics.ca
SPAMO spacing analysis
Module 3
bioinformatics.ca
Big challenges ahead
• Understanding all TFs across a developing organism
• Genetic variation in TFBS
• Integration of data sources
• Transition from matrices to HMMs or energy models
Module 3
bioinformatics.ca
Complexity in transcription
Chromatin
Distal enhancer
Proximal enhancer
Core Promoter
Distal enhancer
59
Reflections
• Part 1
– Futility conjecture – Essentially predictions of individual TFBS have
no relationship to an in vivo function
– Successful bioinformatics methods for site discrimination
incorporate additional information (clusters, conservation)
• Part 2
– TFBS enrichment is a powerful new means to identify TFs likely to
contribute to observed patterns of co-expression
• Part 3
– Pattern discovery methods are severely restricted by the signal-tonoise problem
– Successful methods for pattern discovery will have to incorporate
additional information (ChIP-seq, conservation, structural
constraints on TFs)
Module 3
60
bioinformatics.ca
We are on a Coffee Break &
Networking Session
Module
bioinformatics.ca