Transcript Slide 1

Calibration and Optimization of a Very
Large Volume Deep-Sea Neutrino
Telescope using Extensive Air Showers
Antonios Leisos
International Workshop On Very large Volume Neutrino Telescopes
13-15 October 2009, Athens, Greece
Outline
Air Shower detection for Deep Sea
ν-Telescope Calibration (updated analysis)
•
• Calibration using single muons or
extensive (air) showers?
• New Crude Analysis for Optimum
angular offset determination (motivated
from IceTop Analysis)
A Calibration Study
At least one muon with
E>2TeV passing
through the neutrino
telescope
μ track
dt=0
dt1
dt2
Detailed
Simulation
dt3
(propagation &
Energy Loss)
L   P(ti ; d ( ,  ))
km3

d: distance from the shower axis
A Calibration Study
3 stations for 10 days
5m
Resolution in Estimating
a Possible Angular Offset [deg]
19m
Minimum number of Active counters
Comparison of Estimations
Detector: SeaWiet
Depth: 2500 m
Quality cuts:
• mean deposited charge in active counters >1.7
• number of PMT hits > 10.
φ
array
Θ
array
φ telescope
σ=6.70
θTelescope-θarray
σ=420
φTelescope-φarray
Θ telescope
σ=47m
ΧTelescope-Χarray
Monte carlo Results
SeaWiet
Depth
3X16 counters
10 days of operation
νOne
Offset Sensitivity
θ
φ
2500
0.040±0.005
0.26±0.03
3500
0.045±0.01
0.34±0.07
Depth
Offset Sensitivity
θ
φ
2500
0.040±0.006
0.20±0.02
3500
0.09±0.02
0.46±0.05
1000m
νOne
SeaWiet
Depth
Offset Sensitivity
θ
φ
2500
0.05±0.005
0.24±0.04
3500
0.1±0.02
0.28±0.08
Depth
Offset Sensitivity
θ
φ
2500
0.06±0.007
0.23±0.02
3500
0.15±0.07
0.42±0.07
Can we make it better?
Shower vs Single muon
Total number of muons through S
for 10 days operation
S
Depth (m)
S (m2)
3800
3115
2115
4538
14495
108095
2.5 103 (30% eff) *
1134
3624
27024
9 102 (30% eff) *
409
1304
9728
50 (30% eff) *
23
72
540
50 (10% eff- FR**)
-
3500
15000
104
dN

 I 0 cos  
ddtds
D
*Numbers calculated assuming R0=1km,
30% reconstruction efficiency of ν-Telescope
** Results of MC simulation with full
reconstruction (10 % efficiency)
R0


dN

D
  I 0 rdrd
 2

2
2
2
dt
r D  r D 
(30% eff)*
a
Offset resolution
in 10 days (3X16 m2)
θ
φ
0.005
0.02
Detector Module
GPS timestamp
DAQ S/W based on LabView
Scintillation Tiles
WLS fibers
On-Line analysis - distributions
Module Calibration
Response to a MIP
Single p.e
Detector Uniformity
Charge (pCb)
@ “nominal” H.V.
gain: ~ 4 105
<charge>/p.e. ~ 0.07pCb
<pulse height>/p.e. ~
1.05mV
Typical Mean Numb. of p.e. per m.i.p. : 21
± 10% variation
Monte Carlo & Data Comparison
Detailed
Monte Carlo
description
A1
B2
A3Input C
Trigger
B1
A2
B3
At the Detector Center
 Data
 Data
___ M.C. Prediction
- Monte Carlo
Prediction
Charge (in units of mean p.e. charge)
μ=-0.1±0.3
σ=7.6 ± 0.2
θΑ-θΒ
Use IceTop’s Analysis
Thomas Geisser
(Performance of IceTop Array-ICRC’07
Eμ>2 ΤeV
(X0,Y0.Z0)
Χμ-Χshower
Crude & Accurate Estimation
t anˆ 
d
X N  YN  60m
X 0  Y0  10m
(XN,YN)
 t anˆ 
ˆ
cos   
2

ˆ  cos2     t anˆ  10
Θ0
d
 X N  X 0 2  YN Y0 2
(X0,Y0)
θ0-θshower
Angular Offset Resolution
ΔΤ~14 hours
16 m2 array
0.050
ΔΤ~1 day
3X16 m2 array
0.020
Detector: SeaWiet
Depth: 2500 m
Quality cuts:
• number of PMT hits > 10.
θest-θ0
ΔΤ~10 days
3X16 m2 array
<0.010
Low & Higher multiplicity triggers
Only 2 counters
Detector: SeaWiet
Depth: 2500 m
est
Quality cuts:
•number of PMT hits > 10.
θ -θ0
2 or more counters
θest-θ0
Crude vs Weighted Mean
(XN,YN)
θest-θ0
Θw
d
(Xw,Yw
)
Detector: SeaWiet
Depth: 2500 m
Quality cuts:
•number of PMT hits > 10
θest-θw
Azimuth Offset Resolution
φ0-φshower
Detector: SeaWiet
Depth: 2500 m
Quality cuts:
•number of PMT hits > 10.
φest-φo
Position Correlation
Xdet+10m
θest-θ0
Xdet+50m
Xdet+50m
θest-θ0
φest-φo
Detector: SeaWiet Depth: 2500 m Quality cuts: number of PMT hits > 10.
Summary Of Results
SeaWiet
Depth (m)
νOne
Offset Sensitivity (deg)
θ
φ
2500
0.005
0.02
3500
0.014
0.05
Depth (m)
Offset Sensitivity (deg)
θ
φ
2500
0.01
0.02
3500
0.02
0.06
Consistent Estimations when the array
Is shifted in X or Y axis
Estimation of the angular resolution of the KM3NeT – (Inter-Calibration)
KM3NeT’s resolution
measurement Impossible
using EAS array
KM3NeT resolution ~ 0.1 deg
EAS Detector resolution ~ 2 deg
(Inter-Calibration)
1. Divide the detector in 2 identical sub detectors
2. Reconstruct the muon separately for each sub detector
3. Compare the 2 reconstructed track directions
Working Example
IceCube Geometry
9600 OMs looking up & down in a hexagonal grid.
80 Strings, 60 storeys each. 17m between storeys
MultiPMT
Optical Module
125m
Resolution Estimation (1 TeV Muons, isotropic flux, IceCube Geometry, 9600 OMs)
•Simulated events with at least 14 active
OMs, after filtering out the background
hits.
Mean 12 hits
•The selected sample consisted, in
average, of 24 active OMs per event,
whilst the remaining contamination from
K40 background hits was less than 0.5
OM per event.
Number of active OMs in
one subdetector
•Each muon track was reconstructed
using the information from the whole set
of the active OMs as well as using the
data from the two sub-groups, each
containing the half of the selected OMs.
Mean 24 hits
Number of active OMs in whole detector
Resolution Estimation (1 TeV Muons, isotropic flux, IceCube Geometry, 9600 OMs)
•Simulated events with at least 14 active
OMs, after filtering out the background
hits.
Mean 12 hits
•The selected sample consisted, in
average, of 24 active OMs per event,
whilst the remaining contamination from
K40 background hits was less than 0.5
OM per event.
Number of active OMs in
one subdetector
•Each muon track was reconstructed
using the information from the whole set
of the active OMs as well as using the
data from the two sub-groups, each
containing the half of the selected OMs.
Mean 24 hits
Number of active OMs in whole detector
Resolution Estimation (1 TeV Muons, isotropic flux, IceCube Geometry, 9600 OMs)
σ=0.095o ±0.005o
Zenith angle resolution of subdetectors (degrees)
σ=0.07o±0.003o
Zenith angle resolution of whole detector (degrees)
Resolution Estimation (1 TeV Muons, isotropic flux, IceCube Geometry, 9600 OMs)
σ=0.14o±0.01o
Zenith angle difference between the
2 reconstructed directions (degrees)
Space angle difference between the
2 reconstructed directions (degrees)
≈ 0.095o ±0.005o
SeaWiet
νOne