Transcript Chapter 9

Chapter 9
Molecular Geometry
Introduction
1. Lewis Structures help us understand the
compositions of molecules & their covalent
bonds, but not their overall shapes.
2. The properties of a substance largely depend
on the shape & size of its molecules, together
with the strength & polarity of its bonds.
3. Examples: Taxol, smell, vision
VSEPR Theory
Valence-shell electron-pair repulsion
1. The overall shape of a molecule is
determined by its bond angles.
2. The VSEPR Model is used to predict Molecular
Shapes or Molecular Geometries.
3. The VSEPR Theory assumes that each atom in
a molecule will be positioned so that there is
minimal repulsion between the valence
electrons of that atom.
Five Basic Shapes
1. Linear
2. Trigonal Planar
3. Tetrahedral
4. Trigonal Bipyramidal
5. Octahedral
Chart to Memorize for Basic Shapes
Bond Angle(s)
#Electron-Pairs
Hybridization
180
2
sp
120
3
sp2
109.5
4
sp 3
90 & 120
5
sp3d
90
6
sp 3d2
Using VSEPR Model to Predict Shapes
1. Draw the Lewis dot structure to determine the total
# of electron pairs around the central atom.
2. Multiple bonds (double and triple) count as one.
3. The total number of bonding and nonbonding
electron pairs determines the geometry of the
electron pairs (one of the 5 basic shapes).
4. Then use bonding electron pairs only to determine
the molecular geometry (actual shape of molecule).
Special Rules
1. Lone pairs effect geometry more than bonding pairs.
2. NH3 has one lone pair: reduces angle from 109.5 to
107
3. H2O with two lone pairs: reduces angle from 109.5 to
105.
4. Multiple bonds affect geometry more than single bonds
5. H2C=O (116 instead of 120)
6. H2C=CH2 (117 instead of 120)
7. Lone pairs occupy the axial (middle) position for
trigonal bipyramidal structures.
Practice
Determine the geometry of the following:
BeCl2 CO2
BF3 O3 SO2
CH4 PCl3 H2O
PCl5 SF4 ClF3 XeF2
SF6 IF5 XeF4
Consult the next 3 pages to help you.
Linear
BeCl2
valence e- =
Be
2 + (2 x 7) = 16e-
..
Cl
..
..
..
..
Cl
..
180o
Two Electron Pairs = Linear Molecule
180o
linear
CO2
valence e- =
two
C
..
O
..
valence pairs on C
..
..
..
O
..
4 + (2 x 6)
= 16e-
..
O
..
C
..
O
..
ignore double bonds
single and double bonds same
molecular geometry
linear
molecular shape
linear
120o
trigonal planar
SO2
..
..
O
:
S
..
O
..
..
..
O
..
= 18e-
:
..
O
..
(2 x 6)
..
three
S
6+
..
..
..
O
..
:
valence e- =
S
valence pairs on S
two bonding pairs
one lone pair
molecular geometry
molecular shape
< 120o
trigonal
bent
..
..
O
tetrahedral
109.5o
CH4
valence e- =
4+
(4 x 1)
= 8eH
four
valence pairs on C
H
109.5o
C
H
H
molecular geometry
molecular shape
tetrahedral
tetrahedral
tetrahedral
109.5o
NH3
valence e- =
5+
(3 x 1)
= 8e-
:
four
H
valence pairs on N
N
H
three bonding pairs
H
one lone pair
molecular geometry
molecular shape
< 109.5o
tetrahedral
trigonal pyramid
bipyramidal
120o and 1800
PCl5
5+
(5 x 7)
Cl
= 40e-
five
valence pairs on P
P
90o
molecular geometry
120o
molecular shape
bipyramidal
bipyramidal
..
..
180o
..
..
..
Cl
..
Cl
..
..
..
Cl
..
..
Cl
..
..
..
valence e- =
..
bipyramidal
120o and 1800
SF4
valence e- =
6+
(4 x 7)
= 34e-
:
five
..
four bonding pairs
..
one lone pair
S
< 180o
molecular geometry
molecular shape
..
F
..
..
F
..
.. ..
..
F
..
..
F
..
valence pairs on S
bipyramidal
seesaw
bipyramidal
120o and 1800
ClF3
valence e- =
7+
(3 x 7)
= 28e-
:
five
..
three bonding pairs
two lone pair
molecular geometry
molecular shape
90o
180o
Cl
..
F
..
..
F
..
.. ..
..
F
..
valence pairs on Cl
bipyramidal
T
120o and 1800
bipyramidal
ICl2valence e- =
7+
(2 x 7)
+ e-
= 22e-
:
five
..
I
two bonding pairs
..
Cl
..
three lone pair on I
molecular geometry
molecular shape
bipyramidal
linear
..
..
Cl
..
valence pairs on I
octahedral
90o
BrF5
valence e- =
7+
(5 x 7)
= 42e-
:
..
six
valence pairs on Br
Br
..
..
five bonding pairs
molecular geometry
molecular shape
..
..
..
F
one lone pair
..
..
..
F
..
F
..
..
..
..
F
..
F
octahedral
square pyramidal
octahedral
90o
XeF4
valence e- =
8+
(4 x 7)
= 36e-
:
valence pairs on Xe
two lone pair
molecular geometry
molecular shape
..
..
four bonding pairs
Xe
:
six
..
F
..
..
F
..
..
..
..
F
..
..
F
..
octahedral
square planar
:
..
..
:
O
F
B
S
..
..
:
H
:
C
S
H
O
F
O
H
O
: :
..
S
:F
:
..
O
..
S
C
: :
..
..
O
..
Be
..
..
H
..
..
..
O
..
Cl
..
..
O
..
..
..
..
O
..
Cl
..
H
C
..
..
O
:
N
H
..
O
..
..
..
:
..
O
..
H
:
..
..
..
..
..
..
..
Cl
..
I
..
Cl
..
..
..
..
..
F
..
F
..
Cl
.. ..
..
..
.. ..
..
F
..
..
:
:
:
..
S
..
F
..
..
F
..
..
S
F
..
F
..
..
F
..
..
F
..
..
F
..
..
..
..
:
..
F
..
..
F
..
..
P
..
Cl
..
..
Cl
..
..
F
..
H
..
O
H
..
Cl
..
..
Cl
..
..
..
:
Cl
..
F
..
..
:
Br
..
..
..
F
..
..
F
..
..
..
..
..
..
Xe
..
F
..
..
F
..
..
F
..
..
F
..
:
:
..
..
F
..
..
F
..
Valence Bond Theory
1. Valence Bond Theory explains why molecules
have the shapes they do based on a concept
called hybridization.
2. Hybridization - A mixture of two or more
atomic orbitals.
http://www.youtube.com/watch?v=PrNbhuB9W44&feature=related
10 Minutes
Valence Bond Theory & Hybridization
1. In 1931, Linus Pauling, proposed that the outermost
orbitals of an atom could be combined to form hybrid
atomic orbitals.
– Sigma bond (s) - The end-to-end overlapping of two
orbitals.
– Pi bond (p) - The side-to-side overlapping of two p orbitals.
• Single bonds are made up of one sigma bond.
• Double bonds are made up of one sigma bond and one
pi bond.
• Triple bonds are made up of one sigma bond and two
pi bonds.
Sigma Bonds
The electron density is concentrated on the internuclear line.
More Sigma Bonds
Pi Bonds
The electron density is concentrated above & below the
internuclear line.
Molecular Orbital Theory
MO Theory is used to predict:
1) whether or not a molecule exists
2) its bond type (single, double, or triple)
3) its bond strength (triple are strongest) and
4) some of its properties
(paramagnetic or diamagnetic).
MO Diagrams & Magnetic Properties
Paramagnetism – Molecules with one or
more UNPAIRED electrons in their MO
diagram are attracted into a magnetic field.
Diamagnetism – Molecules with PAIRED
electrons in their MO diagram are weakly
repelled from a magnetic field
Molecular Orbitals
1. Molecular orbitals, like atomic orbitals, have
a definite shape and hold up to 2 electrons
of opposite spin.
2. When 2 atomic orbitals combine & overlap,
they form 2 molecular orbitals.
3. One of these molecular orbitals in a
BONDING orbital and the other is an
ANTIBONDING orbital.
Bonding molecular orbital - Electrons in this orbital spend
most of their time in the region directly between the two
nuclei.
Antibonding molecular orbital - Electrons placed in this
orbital spend most of their time away from the region
between the two nuclei.
Shown below are a sigma (s) bonding molecular orbital and
a sigma antibonding (s *), molecular orbital.
* = Antibond
(a) Shows sigma MOs
(b) & (c) Shows pi MOs
Molecular Orbital Diagram
Small 2s-2p Interaction
Use for Oxygen, Fluorine, & Neon
(Reverse order for o 2p and p 2p for all other others)
Bond Order
Bond order
Type of Bond
0
Molecule doesn’t exist
1
Single bond
2
Double bond
3
Triple bond
Molecular Orbital Diagram
Use with the Bond Order Formula to determine if a molecule exists, its type of bond,
& whether it is paramagnetic or diamagnetic.
(Small 2s-2p Interaction)
Use for Oxygen, Fluorine, & Neon
(Large 2s-2p Interaction)
Use for Boron, Carbon, Nitrogen
Molecular Orbital Diagrams - Steps to determine bond type
1) Sum valence electrons for both atoms
2) Place arrows (represent electrons) in center of the diagram
3) Determine Bond Order = (# bonding e- - # antibonding e-)/2
4) ID Bond Type (1 = single, 2 = double, 3 = triple)
5) ID as paramagnetic (unpaired e- = attract magnet)
or diamagnetic (all paired e- = repel magnet)
Use for Oxygen, Fluorine, & Neon
Use for Boron, Carbon, Nitrogen
• http://www1.teachertube.com/viewVideo.ph
p?video_id=57124
• A Little MO Theory
• 14 minutes