Transcript MOLOCH
Soil scheme of MOLOCH T1 , q1 fraction of model box covered by snow fSNOW fraction of vegetation fVEG first atmospheric level q SKIN TSKIN air specific humidity above the interface soil skin temperature z1 , T1G , q1G z2 , T2G , q2G z3 , T3G , q3G Climatological layer z4 , T4G , q4G Soil and vegetation properties •fVEG •L.A.I. •ZROOT •qWILT, qREF •qMIN, qMAX •WKW •G •b •GCG • • Fraction of vegetation (seasonal function) Leaf Area Index (seasonal function) Root depth (m) Evapotranspiration range (m3/m3) Minimum and maximum water in soil (m3/m3) Coefficient of water diffusivity in soil (kg/m2/s) Hydric potential (m) at saturation Exponent of hydric potential Dry soil thermal capacity per unit volume (J/m3/oK) Emissivity (function of water content and vegetation) Albedo (function of water content and vegetation) Physical and numerical constants used in the scheme CP , CW , CI , W , 0 , LWI , LVW , t K SNOW .5 Thermal conductivity of snow in Watt/m/oK Prognostic fields T1G , T2G , T3G , q1G , q2G , q3G , H SNOW , WVEG mass of water (kg/m2) deposited over vegetation Snow height (m of equivalent water) Diagnostic fields f SNOW , qSKIN , TSKIN , S C D H , q , VIS , IR Drag coefficient Turbulent fluxes of heat and specific humidity (positive upward) and radiation fluxes (positive downward) Efficiency of evapotranspiration (depending on temperature, insolation, and L.A.I.) E EVTR L.A.I . 180 2051 VIS 1 0.19 ln 57 VIS qSAT qSAT ( TSKIN ) * fVEG fVEG , 1 f SNOW . fWETL C kW WVEG MAX WVEG z*k Z ROOT , Saturation of surface air at time t f SNOW 1 fVEG f SNOW 1 fVEG MAX WVEG 0.02 L.A.I . 1, q G q G k WILT G G q q REF WILT 0, fraction of model box covered by vegetation and free of snow fraction of wet leaf G q kG q REF G G qWILT q kG q REF G q kG qWILT k z k , z j Z ROOT j 1 z*k k 1 k Z z j , z j Z ROOT ROOT j 1 j 1 efficiency of root pumping weighted by the layer depth Definition of qSKIN at current time t Air specific humidity over wet leaves qLEAF q1 maxqSAT q1 , 0 EEVTR CWj j Air specific humidity over bare soil and pools (ZG is the surface wetness) q1 1 Z G q SOIL q SAT Z G ZG 1 S C D F1 q MAX min(q MAX , q1G ) 1 S A 18.0 F2 .5, b F2 179.4 , F1 max .01, 14.85 , b 1.75 T S A 2.3 105 SKIN T0 qSKIN coefficient of molecular diffusivity of vapor into air * * fWETL qSAT ( 1 fWETL )qLEAF 1 f SNOW fVEG f SNOW qSAT fVEG qSOIL Atmospheric vertical diffusion q1 Updated specific humidity at first atmospheric level S CD Updated drag coefficient of humidity and temperature (over land only) q S CD qSKIN q1 Turbulent flux of specific humidity (kg/m2/s) positive upward 1 ( RV / Rd 1 ) qSKIN S C D VSKIN 1V H P0 PS Rd CP Turbulent flux of heat (Watt/m2) positive upward CP Humidity flux disaggregation using the updated value of q1 Flux over snow in kg/m2/s SNOW min( S C D f SNOW qSAT q1 , W H SNOW / t ) Flux over the fraction of wet leaf * qSAT q1 min( S C D fVEG fWETL qSAT q1 , WVEG / t WETL * qSAT q1 S C D fVEG qSAT q1 Evapotranspiration from the fraction of dry leaf and from the k-th soil layer (kg/m2/s) q SAT EVTRK q SAT W C * k q1 S C D fVEG 1 fWETL q LEAF q1 C Wj q1 j 0 Humidity flux over the fraction of bare soil and pools (it conserves water exactly). SOIL q SNOW WETL EVTR k k ) Residual precipitation and WVEG update Precipitation intercepted by leaves (it can be negative) MAX * PINTC min((WVEG WVEG ) / t WETL , PRAIN fVEG ) WVEG update WVEG WVEG t PINTC t WETL Computation of residual precipitation at the ground - When the intercepted precipitation is negative, the (negative) specific humidity flux increases the residual precipitation (in parole povere, rugiada che cade a terra) PRES PRAIN PINTC TSKIN : soil temperature at the upper interface from flux balance Surface heat exchange coefficient 1 2 H SNOW z1 G K G f SNOW ( K SNOW K G ) , 1 min G CG W CW q1 W C I 2 t z1 z1 Numerical limitation K G 0.5 1400e 6 log10 , L LVW f SNOW LW I , q MAX G min(q G , q 1 MAX ) b thermal diffusivity of ground H 1( TSKIN T1G ) (heat flux from the ground) H ( TSKIN ) L q ( TSKIN ) VIS IR ( TSKIN ) H ( TSKIN ) R dqSKIN dT q S C D , dTSKIN dT H C P S C D , d T IR 4 0TSKIN 3 n1 n1 n1 n1 H ( TSKIN ) Lq ( TSKIN ) VIS IR ( TSKIN ) H ( TSKIN )0 Newton step R ( dT H LdT q dT IR 1 )TSKIN 0 Snow height update H SNOW H SNOW t ( PSNOW SNOW ) W TSNOW TSKIN ( 1 )T1G , 1-Fall-Sublimation 1 / 2 (melting parameter) C max( T 273 . 15 , 0 ) I SNOW H SNOW H SNOW min1, W LI PMELT W H SNOW / t (Kg/m2/s) 2-Melting H SNOW H SNOW H SNOW f SNOW min1, H SNOW / H REF 3-Snow fraction update Water flux and content update of the first soil layer (m3/m3) 1 PRES PMELT SOIL k 1 EVTR k q1G ( t t ) q1G ( t ) z1 W KW b 2 G q q MAX MAX G q2 q1G1 / 2 k 2 EVTR k , q1G ( t t ) qMIN b2 Kg/m2/s t 1 2 W z1 min(q MAX , q1G q1G1 / 2 ) q2G .5( z1 z 2 ) W KW q MAX q1G1 / 2 2b 3 z1q2G z 2 min(q MAX , q1G ) z1 z 2 z1W G q1 ( t ) qMIN 1 2 t G q1 ( t t ) qMIN Flux correction Water flux and content update of the second soil layer (m3/m3) 2 q2G ( t t ) q2G ( t t 2 3 ) W z 2 q2G1 / 2 W KW b 3 G q q MAX MAX k 3 EVTRk , q2G ( t t ) qMIN qMAX b2 q2G1 / 2 q2G q3G .5 ( z 2 z3 ) W KW q2G1 / 2 q MAX 2b 3 z 2 q3G z3 q2G z 2 z3 z 2W qMIN G q2 ( t ) 3 2 t q MAX qMIN G q2 ( t t ) q MAX Flux correction Internal heat exchange coefficients K G 0.5 1400e 6 log10 , q MAX G G q 11 / 2 b H SNOW z1 2 G 2 min KG , G CG W CW q1 W C I 2t z1 z1 z 2 K G 0.5 1400e 6 log10 2 3 min KG , z 2 z3 , q MAX G G q 21 / 2 G C C q G G W W 2 b 2z t 2 If both 1 and 2 are equal to their upper bounds, T1G at new time step becomes the arithmetic average between TSKIN and T2G (due to diffusive terms alone). T1G tendency: irreversible mixing and heat diffusion heating due to heat exchange with snow at air temp. T1 heating due to mixing with rain at air temp. T1 Cooling due to melting snow heat capacity at new time level G CG z1 W CW q1G z1 W C I H SNOW T1G PMELT LWI t PRES tCW ( T1 T1G ) PSNOW tCI ( T1 T1G ) 1( TSKIN T1G )t 2 ( T2G T1G )t 2 tCW ( T1G1 / 2 T1G ) PMELT CW ( 273.15 T1G )t ( SOIL EVTRk )CW SNOW C I ( TSKIN T1G )t k heating due to mixing with water diffused from below (including root pumping) diffusion of heat heating due to mixing with melted snow at freezing temp. cooling (heating) due to the increase (decrease) of evaporating water/ice to temperature TSKIN T2G tendency G G C z C q z T G G 2 W W 2 2 2 2 ( T1G T2G )t 3 ( T3G T2G )t 2 tCW ( T1G1 / 2 T2G ) 3 tCW ( T2G1 / 2 T2G ) Final temperature update TkG TkG TkG , k 1, 2, 3 Runoff t 1 Orography R min1, 1800 q1G ( t t ) qMAX q1G q1G R q1G qMAX