QCD and the origin of proton

Download Report

Transcript QCD and the origin of proton

The HERMES experiment
Gerard van der Steenhoven, 19 September 2004
Search the carriers of proton spin
• Three possible sources:
– quarks:
 valence quarks
 sea quarks (qq )
– gluons
– orbital momentum
• Mathematically:
½ = ½ Sq + DG + Lq
~ 10%
?
EMC (85): Sq ~ 10%
?
The experimental strategy
• Polarization of the sea quarks
• Polarization of the gluons
• Orbital angular
momentum
• Transversity:
“switch off
the gluons”
Outline of the lecture
1. The origin of proton spin?
– Polarization of quarks
– Gluon contributions
2. New developments
– Generalized parton distributions → DVCS → Lq,g
– Transverse spin → switch off the gluons
3. Other surprises
– The HERMES pentaquark signal
– Parton energy loss in nuclei
4. Outlook
How to probe the quark polarization?
Polarized
deep
inelastic
electron
scattering
Parallel electron & quark spins
Anti-parallel electron & quark spins
Measure yield asymmetry:
1 N  N
A1 
DPT PB N  N
In the Quark-Parton Model:
A1 
g1 ( x)
1
2

e

f Dq f ( x)
F1 ( x) F1 ( x) f
Spin-dependent Structure Function
Why HERMES?
• Original purpose (~1990):
– Measure inclusive spin structure
functions g1(x) for proton & neutron
– Measure polarization of u-, d- and
sea-quarks separately: Dqu,d,sea(x)
gluon
• What came out sofar (~2004)?
– Precise data on g1n,p(x), Dqu,d,sea(x)
– First measurements of DG(x), DVCS,
transversity, parton energy loss,…
Quark-antiquark pair
→ design a reliable multi-purpose detector system !
The HERMES experiment
EM Calorimeter
Magnet
RICH
TRD
Target area
Beam Loss Monitor
Lambda Wheels
The HERMES spectrometer
27.6
GeV
e+/e-
0.02 < x < 0.6, 1.0 < Q2 < 15 GeV2
p/p ~ 1-2%,  < 0.6 mrad
Data taking since 1996
1996-2000
2002 - 2004
Spin-dependent structure functions
• The function g1(x):
• Evaluate the integrals:
1p   g1p ( x)dx  16 F  181 D  19 S q


From hyperon decays
Total spin carried by quarks
• 1999 result:
Sq  0.2  0.1
2
Q
dependence of F2(x) and g1(x)
F2 ( x, Q 2 )
x

2
2
+
+
→ Gluons contribute to the nucleon spin !
QCD analysis of world data (’03)
• Next-to-Leading-Order analysis of g1 ( x) -data
Excellent data for x > 0.01
Polarized Parton Densities
• First moments:
– input scale
Q02  4.0 GeV2
– pol. singlet density:
DSq  0.167 0.169(stat)
 0.133(exp) 0.070(th)
– pol. gluon density:
DG  0.616 0.388(stat)
 0.175(exp) 0.424(th)
There must be other sources of angular momentum in the proton
Flavour decomposition of spin
• Semi-inclusive deep
inelastic scattering
• Hadron tags flavour of
struck quark
• Derive purity of tag from
unpolarized data
Key issue: role of sea quarks in nucleon spin
Particle identification
• Dual radiator RICH:
Aerogel
p
Detection efficiencies
K
P
C4F10
p
24.08.2004
K
Flavour decomposition: results
• The method:
Polarized
Parton
Distribution
Functions !
A1h ( x,Q2 ) 
2
2
h
2
e
D
q
(
x,Q
)
dzD
(
z,Q
)
f f f
 f
2
2
h
2
e
q
(
x,Q
)
dzD
(
z,Q
)
f f f
 f
Hadron
asymmetries
(measured)
Known quantities
(from other data)
• Conclusion: Dqsea  0
Flavour symmetry breaking
Unpolarized data:
Polarized data:
Strong breaking of
flavour symmetry
No significant breaking
of flavour symmetry.
Gluon polarization
• Photoproduction of high
pT –hadron pairs
→
• Contributing diagrams:
• Corresponding asymmetries:
A
VMD
||
0
A
DIS
||
Δq

q
A
QCDC
||
Δq PGF ΔG
A|| 

G
q
Data and plans for DG/G
• Asymmetry for high-pT hadron pairs production:
±0.18±0.03
SMC : ΔG/G  0.20  0.28  0.10
• New high-precision data →
Generalized Parton Distributions
• Consider exclusive processes:
– Deeply virtual Compton scatt.
– Exclusive vector meson prod.

initial
quark
 
final
quark
p0, r0L, g ...
t
x+
x-
N’
N
• Collins et al. proved factorization theorem (1997):
2
 excl. prod . 
 
*
m
( , z ) c mf ( x,  , Q 2 ) H fp ( x,  , t ) d
f
Distribution amplitude
(meson) final state
Hard scattering
coefficient (QCD)
Generalized Parton
Distribution (GPD)
(NASTY: x = xBj for quarks and x = -xBj for antiquarks → x  [-1,1])
The remarkable properties of GPDs
• Integration over x gives Proton Form Factors:
1
1
~
dx
H
 ( x,  , t )  GA (t )
 dxH ( x,  , t )  F1 (t ),
Dirac
1
-1
1
 dxE ( x,  , t )  F2 (t )
1
• The forward limit:
Axial vector
1
~
dx
E
 ( x,  , t )  GP (t )
Pauli
-1
Pseudoscalar
~
, 0
H q ( x,  , t )  q( x); H q ( x,  , t ) t
 Dq( x)
t , 0
• Second moment (X. Ji, PRL 1997):
1
1
2


t 0
1
x
H
(
x
,

,
t
)

E
(
x
,

,
t
)
dx



J

q
q
2 S q  Lq
 q
1
GPDs give access to Orbital Angular Momentum of Quarks
Applying the GPD framework
• GPDs enter description of different processes:
As Jq = ½Sq + Lq
information on Jq
gives data on Lq.
• Take Fourier transform of leading GPD:
q ( x, b )  2p 2  H ( x,  ,t )e
f

1
f
 ib t
dt
Spatial distribution of quarks in the perpendicular direction
A 3D-view of partons in the proton
Form Factor
Parton Density
Gen. Parton Distribution
A.V. Belitsky, D. Muller, NP A711 (2002) 118c
Experimental access to GPDs
• Exclusive meson electroproduction:
– Vector mesons (r0): H ( x,  , t ) and E ( x,  , t )
~
~
– Pseudoscalar mesons (p): H
( x,  , t ) and E ( x,  , t )
• Deeply virtual Compton scattering (DVCS):
DVCS
Bethe-Heitler
Experimental access to DVCS
• DVCS observables:
– Cross section:
dσ  |τ BH|2 |τ DVCS|2  (τ*BH τ DVCS  τ*DVCS τ BH )
– Beam charge asymmetry:
– Beam spin asymmetry:
– Longitudinal target spin asymmetry:
Key
differences
Beam charge
asymmetry
First DVCS results
Beam spin asymmetry
What is transversity?
• Three leading order quark distributions:
momentum carried by quarks
longitudinal quark spin, DS
transverse quark spin, S
• Gluons don’t contribute to h1(x), while dominant in g1(x):
 Study nucleon spin while switching off the gluons
• New QCD tests: Q2 evolution h1(x) & S > DS (lattice)
Measuring transversity
• The relevant diagram:
– helicity flip of quark & target
– chirally odd process
• Consequences:
quark flip
target flip
+
+
-
D  2
– no gluon contributions….
D  1
… & measure single-spin asymmetries:


N
(

,

)

N
1
h
h
s
h ( , s )
AUT ( , s ) 
PT N h ( , s )  N h ( , s )
Single – Spin Asymmetries
• Sivers effect:
AUT driven by
orbital motion
struck quark:
measure L
• Collins effect:
AUT driven by
fragmentation
process: measure
transversity
First data on transversity
‘Collins’:
Pp 
zM p
sin(  s ) ~ h1 ( x)  H
 (1)
1
( z)
‘Sivers’:
Pp 
zM p
sin(  s ) ~ f1T(1) ( x)  D1 ( z )
First evidence for non-zero Collins (h1) and Sivers effects (Lq)
HERMES, hep-ex/0408013
Parton Energy Loss
• Energy loss mechanisms:
– hadron-nucleon rescattering
DEhadron    A1/ 3
– quark-gluon propagation
DEparton  2  A2 / 3
(QCD: LPM effect)
• Relevance:
– Verification novel QCD effect
– Study of Quark-Gluon Plasma
in relativ. heavy-ion collisions.
DIS on heavy nuclei
• Hadron attenuation in 14N, 84Kr:
Data: EPJC 21 (2001) 599
Search for quark-gluon plasma
Dashed: X. Wang et al. (2002)
[QCD + LPM effect + tune g(x)]
Solid: Accardi et al. (2003)
[pN incl. Q2 rescaling effects]
Energy loss in hot matter
• p0 production in Au + Au
collisions at Phenix:
• Adjust energy loss to fit
data (cf. cold matter)
 ghot matter >> gcold matter 
New data on hadron attenuation
• Cronin effect:
– enhancement at
high pT2 (rescatt.)
• Attenuation for p0:
Search for quark-gluon plasma
Two-hadron attenuation
• Evaluate:
R2 h

(z ) 

2


d 2 N ( z1 , z 2 )
dN ( z1 )
A
2
d N ( z1 , z 2 )
dN ( z1 )
D
• Partonic energy loss:
R2h →1
• Hadronic energy loss:
R2h ~ (R1h)2  0.5(Kr) - 0.8(N)
Both partonic and hadronic energy loss processes are relevant
The HERMES pentaquark signal
• Quasi-real photoproduction: e+D   X
• Decay mode:
 p K0s  p pp
27.6 GeV e-beam
deuteron
gas target
Invariant
mass from
identified
decay
particles
+

Invariant mass peak
• Background: 3rd
order polynomial
• M =1528  2.6 MeV
•  = 8  2 MeV
(dominated by exp.
resolution)
• Significance:
2
 4.7
– naïve: N sig2 / N bck
– realistic: Nsig / Nsig  3.7
Gauss + 3rd
order polynom.
Background below the
• Background: MC simulation + resonances
• M = 1527  2.3 MeV
•  = 9.2  2 MeV
• Significance:
– naïve: 6.1 
– Realistic: 4.3 
Mixed event background
Pythia6 background
additional S*+ resonances (not in Pythia6)
+

Gaussian +
resonances +
background fit
Comparison of pentaquark data
nK+
• Mean: 1532.52.4
MeV
pK s0
Average of all data:
M = 1532.5  2.4 MeV
Includes latest from
- JINR (hep-ex/0403044)
- LPI (hep-ex/0404003)
Latest HERMES results on
+

• Require additional p in + mass spectrum
• Impose veto on K* and (1116)
Signal/background improves from 1:3

2 :1
Summary
• HERMES results:
– Quark sea → unpolarized
– Gluons → polarized // proton
– First data on transversity:
Quarks carry orbital momentum?
– First exploration of GPDs
– Partonic energy loss seen
– Co-discovery pentaquarks
• The future:
– End of HERA operations:
summer of 2007