The Big Idea

Download Report

Transcript The Big Idea

Gasification Technologies
for Fuel Production
Tim Eggeman, Ph.D., P.E.
June 29, 2009
1
Third Meeting of the International Sugarcane Biomass Utilization Consortium
Shandrani Resort & Spa, Mauritius
Gasification Can Be:
“Simple”
WWII Automobile
2
“Complex”
SASOL
Fuel Gas Applications Are Simplest
Central Minnesota Ethanol Cooperative
15 Million gal/yr Corn Dry Mill
$15 Million Gasifier Retrofit
3
Another Fuel Gas Application
Retrofit a Pulverized Coal Boiler to Allow Co-firing Biomass
Lahti, Finland
50 MWth
4
Why are Fuel Gas Applications “Simple”?
• Atmospheric Pressure Operation
• Air Blown:
– Low Calorific Gas w/ N2 is OK
• Low Temperature
– High Make of Methane and Tars is OK
– Dry Ash…generally OK
• Moving Bed is Common
5
Gasifier Flow Patterns
a) Moving Bed
c) Entrained Flow
6
b) Fluidized Beds
Fuel Capacity
Entrained Flow
7
BIGCC Are More Complex
Värnamo, Sweden
18 MWth Input as Wood
Gasifier: Circulating Fluid Bed,
Air Blown,
18 bar, 950-1000 °C
8
CONFIDENTIAL
Repotec Gasifier
9
CONFIDENTIAL
Repotec – Güssing 8 MWth
Operating Hours Per Year
10
Year
2002
2003
2004
2005
2006
Gasifier
3182
4695
6137
7078
7191
Gas Engine
1251
4152
5463
6487
6826
Not All Projects are Successful
• Many Fail to Get Funding
– SIGAME (Eucalyptus BIGCC in Brazil)
• Technical and Management Problems
Paia, Hawai’i
Bagasse BIGCC
Had Problems with
Bagasse Supply/Feed
11
Feedstock Properties
Herbaceous
Biomass
Woody
Biomass
Illinois No. 6
Coal
C: 45%
O: 40%
C: 50%
O: 40%
C: 80%
C: 10%
Moisture: 15%
Moisture: 50%
Moisture: 11%
Volatile C: 80%
Fixed C: 15%
Volatile C: 80%
Fixed C: 15%
Volatile C: 45%
Fixed C: 45%
Heating Value,
MJ/Kg (dry)
18
20
29
Ash Minerals
Si, K
Si, K, Ca, Mg
Si, Al, Fe, Ca
Ash Properties
TInitial Deformation, °C
TFluid, °C
700-850
1500
800-900
1000-1100
1200-1300
Ultimate
Analysis
Proximate
Analysis
12
Ash Properties
Instantaneous Feed Heating
Slagging
Operations
Raw Gas Quenching
Sticky
Ash
Regime
Forbidden
Temperature
Range
Dry Ash
Gasifiers
Agglomerating
Gasifiers
TInitial
Deformation
13
Slagging
Gasifiers
TFluid T250
Ash Properties
14
a) Coal Ash
b) Biomass Ash
From: www.ultrasys.com.au/bits.html#
From: Miles et. al. (1996)
Thermodynamics
Effect of Pressure at T = 1000 °C
15
Effect of Temperature at P = 30 Bar
Fuel Footprint
a) Iso-lines of Cold Gas Efficiency
16
b) Iso-lines of Syngas (H2 +CO) Yield
Gasification for Chemicals is Most Complex
Feed
Conditioning
Pyrolysis
Torrefaction
High
Temperature
Gasification
~1300°C
Grinding
Synthesis
Gas
Chemicals
Syngas
Process
Tail Gas
(Heat, Steam/Power)
Tar
Reforming
Biomass
Low
Temperature
Gasification
Producer Gas
(Heat, Steam/Power)
~800°C
17
Biomass to Liquids (BTL)
Gasification:
Fischer-Tropsch:
Biomass O2  CO  xH2
nCO  2nH2  (CH2 )n   H2O
Distribution of Products Means
Additional Hydrotreating Is Needed
18
Choren
Freiberg Site
Blue Stripe Building (Back) – Alpha Plant
Red Stripe Building (Center) – Beta Plant
Open Space (Center Left) – Future Shell FT Plant
19
Installation of Entrained Flow Gasifier,
Beta Plant
Choren
20
Mixed Alcohol Synthesis
Chemistry:
nCO  2nH2  Cn H2 N 1OH  (n  1) H2O
CO  H 2O  CO2  H 2
Shift Lowers H2:CO ~ 1
Products Follow Flory Distribution
Requires High Pressures
21
Range Fuels
Demonstration Plant in Soperton, GA in Planning
22
Syngas Fermentation
Same Chemistry as
Mixed Alcohol Synthesis!
23
Coskata
Working With
AlterNRG for
Plasma Gasification
24
ZeaChem Technology
ZeaChem’s Core
Technology
Sugar
Solution
Biomass:
• Hardwood
• Softwood
• Switch Grass
• Corn Stover
Residue to Gasifier
25
25
Sales
Acetic
Acid
Ethyl
Acetate
Ethanol
Sales
Hydrogen
Theoretical Yields
Biochemical Only
Thermochemical Only
Syngas Fermentation
ZeaChem Hybrid
Yield: 78-112 gal(neat)/BDT
39-56
Yield: 112 gal(neat)/BDT
56
Yield: 112 gal(neat)/BDT
56
Yield: 156 gal(neat)/BDT
78
Balance
4
Balance
14
Biochemical
Processing
Balance
61-44
Balance
30
100
Mixed Alcohol
Synthesis
Balance
14
Syngas
Syngas
70
70
Balance
30
Thermochemical
Processing
Hydrogenolysis
Biochemical
Processing
Thermochemical
Processing
100
100
H2
Ester
30
52
Biochemical
Processing
Balance
18
Residue
8
60
Thermochemical
Processing
40
Other, 10
Cellulose, 40
100
Lignin, 30
Hemicellulose
Acetate, 2
Hemicellulose
Sugars, 18
Values in Italics Indicate Chemical Energy
Flow Normalized to Biomass = 100
Yield assumes 200 gal(neat)/BDT for 100%
Chemical Efficiency
26
Recommendations for ISBUC
• Have Well-Defined Scope
– Start Simple then Build Complexity
– Need a Strong Operating Partner with
• Form a High-Level Business Case Early
– Incremental Economics for Addition of a BIGCC to a
“Typical” Mill
– Refine as Progress is Made
• Project Plan
– Sources of Funds
– Location
– Schedule
27
Potassium Content
Potassium Content of Biomass
Rice straw
Imperial wheat straw
California wheat straw
Alfalfa stems
Oregon wheat straw
Switchgrass, OH
Rice husks
Danish wheat straw
Wood - yard waste
Almond wood
Wood - land clearing
Miscanthus, Silberfeder
Poplar - coarse
Forest residuals
Demolition wood
Switchgrass, D Leaf, MN
Hybrid poplar
Switchgrass, MN
Alder/fir sawdust
Willow - SV1-1 yr
Furniture waste
Willow - SV1-3 yr
Urban wood waste
Sugar Cane Bagasse
Red oak sawdust
RFD - Tacoma
Fir mill waste
Mixed waste paper
0.0
0.5
1.0
1.5
2.0
2.5
Potassium Content (lb/MMBtu)
28
3.0
3.5
Table 2.1 - Typical Feedstock Analyses
Complied from Phyllis (2006), US DOE Biomass Database (2006),
Neto (2005), Meyers (1981) and others
Herbaceous Biomass
Corn
Stover
(Whole)
Corn
Stover
(Cob)
Switchgrass
Cane
Bagasse
Woody Biomass
Cane Trash
Dry Leaves
Cane Trash
Green Leaves
Cane Trash
Tops
Hardwood
Hybrid
Poplar
Hardwood
Eucalyptus
Fossil
Hardwood
Oak
Softwood
Pine
Coal
Lignite
Coal
Illinois No. 6
Bituminous
Pet Coke
Ultimate Analysis, wt% dry
C
H
N
S
O
Cl
Ash
46.80
5.74
0.66
0.11
41.40
0.27
5.10
46.60
5.87
0.47
0.01
45.50
0.21
1.40
47.39
5.67
0.55
0.06
39.13
0.09
6.54
44.60
5.80
0.60
0.10
44.50
0.02
2.20
46.20
6.20
0.50
0.10
43.00
0.10
3.90
45.70
6.20
1.00
0.10
42.80
0.40
3.70
43.90
6.10
0.80
0.10
44.00
0.70
4.30
50.20
6.06
0.60
0.02
40.40
0.01
2.70
49.50
5.75
0.14
0.03
44.00
0.06
0.50
49.90
5.94
0.38
0.50
41.30
0.01
2.40
51.30
4.69
0.51
0.15
40.30
0.02
3.00
65.70
4.50
1.20
1.00
18.40
9.20
70.00
4.90
1.40
3.80
10.70
9.20
88.24
3.68
2.18
5.69
0.51
0.30
Proximate Analysis, wt% dry
Moisture
6.1
8.0
13.9
50.2
13.5
67.7
82.3
50.0
50.0
50.0
50.0
35.5
11.2
7.0
80.9
14.0
5.1
80.1
18.5
1.4
77.0
15.9
6.5
79.9
18.0
2.2
84.5
11.6
3.9
80.6
15.7
3.7
79.3
16.4
4.3
84.8
12.5
2.7
86.6
12.9
0.5
84.2
13.4
2.4
75.6
21.4
3.0
48.7
42.1
9.2
46.3
45.6
8.1
13.4
86.3
0.3
Cellulose
Galactan
Mannan
Xylan
Arabinan
Lignin
Balance
37.3
0.9
0.5
16.4
3.1
14.6
27.2
40.2
1.7
0.0
23.6
3.2
12.3
19.0
36.9
1.4
0.3
23.0
2.4
9.6
26.4
39.1
0.4
0.3
20.2
1.6
24.3
14.0
43.2
0.8
2.5
16.4
0.7
24.2
12.3
48.5
0.9
1.0
11.6
0.4
27.7
9.9
38.6
2.1
0.0
17.7
0.6
27.4
13.6
44.2
2.0
12.3
5.2
0.7
27.9
7.7
Total Sugars
58.2
68.7
64.0
61.7
63.5
62.4
59.0
64.4
18.10
18.77
18.90
18.10
17.40
17.40
16.40
19.02
19.22
20.45
20.59
25.52
29.20
35.64
2
8.7
1.3
6.98
7.14
2.3
0.7
0.9
65
10.9
29
13.6
17.6
17.9
5.8
3.56
7
3.17
1.4
9.6
18.4
7.2
7.3
0.5
9.9
8.3
4.5
13.1
4.7
6.6
0.1
2.5
20.1
1.8
1
0.2
8.7
54
1.2
6.9
40.3
8.7
1.03
2.8
65.42
2
0.34
2.3
1.7
0.5
0.062
0.045
0.5
0.5
2.6
0.00006
0.2
29.5
2.5
0.155
0.119
2.5
7.9
26.5
4.1
2
2.5
1.4
3.9
0.00006
0.5
13.3
2.2
0.12
0.128
2
0.8
49.9
20.7
6.1
3.5
4.7
0.00006
0.9
2.7
2.1
0.169
0.123
0.5
0.6
0.1
41.8
14.6
1.5
0.4
0.1
47.5
4.6
0.8
-0.4
33
0.56
91.893
0.009
85.29894
0.015
76.43694
0.59
0.02
0.28
0.02
0.06
0.29
Volatile Carbon
Fixed Carbon
Ash
Biochemical Analysis, wt% dry
Heating Value
HHV, MJ/kg (dry)
Ash Composition, as Oxides wt% of Ash
Al2O3
CaO
CuO
Fe2O3
K2O
MgO
MnO2
Na2O
P2O5
SiO2
SO3
TiO2
ZnO
Balance
Alkali, kg/GJ Feed (dry)
0.1
1.3
5.9
2
0.3
5
29.1
17.8
0.8
7.5
2.3
2.2
0.1
0.6
5.3
46.1
0.035
61.89094
10.3
-0.8
2.5
-14.4
1
0
0.78
0.14
0.03
0.13
0.20
0.03
0.06
0.2
Ash Fusion Temperatures, C
29
Reducing Conditions
Initial Deformation
Spherical
Hemispherical
Fluid
1129
1234
1414
1518
1079
1166
1177
1227
1093
1182
1193
1271
Oxidizing Conditions
Initial Deformation
Spherical
Hemispherical
Fluid
1160
1266
1377
1500
1132
1199
1210
1254
1260
1332
1343
1432