First Principles Thermoelasticity of Mantle Minerals

Download Report

Transcript First Principles Thermoelasticity of Mantle Minerals

Quasiharmonic Thermodynamic Properties of Minerals
Renata M. M. Wentzcovitch
Department of Chemical Engineering and Materials Science
Minnesota Supercomputer Institute
U. of Minnesota
• Motivation
• First Principles Thermodynamic Method
How reliable is it?
• Examples
MgSiO3- Ilmenite to perovskite phase transition
Thermoelasticity of perovskite
Crystal structures at high (P,T)
• Summary
The Contribution from Seismology
Longitudinal (P) waves
VP 
4
K G
3

Transverse (S) wave
VS 
G

 from free oscillations
Seismic Discontinuities and Phase Transitions
PREM
Dziewonski and Anderson, 1981
“660 km” topography
J. M. Kendall, 2000
Methods
• Local Density Approximation
• Soft norm-conserving pseudopotentials
• Born-Oppenheimer variable cell shape molecular dynamics
• Density functional perturbation theory for phonons
Thermodynamic Method
• VDoS and F(T,V) within the QHA
F (V , T )  U (V )  
qj
 qj (V )
2

  qj (V )  


 k BT  ln1  exp

k BT  
qj


N-th (N=3,4,5…) order isothermal (eulerian or logarithm) finite strain EoS
 F 
P   
 V T
 F 
S   
 T V
G  F  TS  PV
IMPORTANT: structural parameters and phonon frequencies
depend on volume alone!!….
(Thermo) Elastic constant tensor 
2


G 
T
cij (T , P )  

  i  j 
i
cij (T , P)  cij (T , P) 
S
equilibrium
structure
re-optimize
T
S
i 
 i
T
i  jVT
CV
Zero Point Motion Effect
F (Ry)
MgO
Volume (Å3)
V (Å3)
K (GPa)
K´
K´´(GPa-1)
Static 300K
18.5 18.8
169
159
4.18 4.30
-0.025 -0.030
Exp (Fei 1999)
18.7
160
4.15
Elasticity of MgO
(Karki et al., Science 1999)
MgSiO3-Akimotoite to perovskite transition
Akimotoite bearing slab
Clapeyron equation:
dT dV

dP dS
23 GPa
1980 K
dS  0 
dT
0
dP
Tc
Pv
T
Ak
From Fukao et al., Rev. Geophys. (2001)
T<Tc
Pc
P
P>Pc
Transformation inhibited in cold regions!!
MgSiO3-ilmenite (Akimotoite)
corundum
Si2O3 layer
ilmenite
Al
o
o
1.77 A < Si-O < 1.83 A
LiNbO3
Mg2O3 layer
Mg
R3
o
o
1.99 A < Mg-O < 2.16 A
Si
Mg
Si
MgSiO3-perovskite (Pbnm)
SiO3 octahedra
o
o
2.01 A < Mg-O < 3.12 A
o
o
1.78 A < Si-O < 1.80 A
Phonon dispersion of MgSiO3-ilmenite and perovskite
Pv: Raman [Durben and Wolf 1992]
Infrared [Lu et al. 1994]
Ak: Raman [Reynard and Rubie, 1996]
Infrared [Madon and Price, 1989]
Calc Exp
Calc Exp
Calc Exp

Octahedral
deformation

Mg
displacement

Octahedral
rotation
NEW!

0 GPa
Aaaaaaa
Aaaaa

Octahedral
deformation
Mg
displacement
Thermodynamic phase boundary
Exp:Ito & Takahashi (1996)
Issue I: Change in PT after inclusion
of zero point motion energy (Ezp)
Issue II: discrepancy between
theory and experiments
30
perovskite
perovskite
Static
Static
Pressure (GPa)
Gil(P,T)
X
Gpv(P,T)
Pressure (GPa)
25


Experiment
Experiment
20
Theory
Theory
15
akimotoite
akimotoite
10
5
MgSiO3
MgSiO
3
0
0
500
1000
1500
Temperature
(K)
Temperature (K)
2000
• I
s
s
“…Useful rule…”

xi 
 xi
S (V , T )  kB   ln 1  e  kB xi
e  1 
i 





 i
 xi 
k BT

F(V,T)
pv
Pc
Ezp shifts
ak
dS dT

 0  E zp  0
dV dP
V

Pc decreases



Thermodynamic phase boundary
Exp:Ito & Takahashi (1996)
Issue I: Change in PT after inclusion
of zero point motion energy (Ezp)
Issue II: discrepancy between
theory and experiments
30
perovskite
perovskite
Static
Static
Pressure (GPa)
Gil(P,T)
X
Gpv(P,T)
Pressure (GPa)
25


Experiment
Experiment
20
Theory
Theory
15
akimotoite
akimotoite
10
5
MgSiO3
MgSiO
3
0
0
500
1000
1500
Temperature
(K)
Temperature (K)
2000
Issue II…
 (10-5 K-1)
…a posteriori criterion for the validity of the QHA



MgSiO3
Karki et al, GRL (2001)
30
perovskite
perovskite
Static
Static
25
Pressure (GPa)
(GPa)
Pressure

Experiment
Experiment
20
Not OK!!
Theory
Theory
15
QHA OK
10
akimotoite
akimotoite
5
MgSiO
3
MgSiO
3
0
0
500
1000
1500
2000
Temperature
(K)
Temperature (K)
Exp:Ito & Takahashi (1996)
Properties of MgSiO3-perovskite and -ilmenite

(gr/cm-3)
V
(A3)
KT
(GPa)
d KT/dP
d KT2/dP2
(GPa-1)
d KT/dT
(Gpa K-1)
10-5 K-1
3.580
3.908
18.80
176.8
159
201
4.30
4.7
-0.030
-0.042
-0.014
-0.025
1.88
3.12
Calc.
MW
Ak
-0.0145
~
1.67
|
3.13
2.44
Exp.
MW
Ak
3.601
3.943
18.69
175.2
160
212
4.15
4.210
164.1
247
4.8
4.0
-0.016
-0.031
2.1
Calc.
Pv
Pv
246
|
266
(256)
3.7
|
4.0
~
-0.02
|
-0.07
1.7
|
2.2
Exp.
Pv
Pv
4.247
162.3
~

Exp.: [Ross & Hazen, 1989; Mao et al., 1991; Wang et al., 1994; Funamori et al., 1996;
Chopelas, 1996; Gillet et al., 2000; Fiquet et al., 2000; Weidner & Ito, 1985; Reynard
& Rubie, 1996; Hofmeister and Ito, 1992; Chopelas, 1999]
Ad hoc correction to DFT results…
(perovskite)
0GPa
LDA
V
V
0GPa
exp
2.5GPa
0GPa
V
V

V


1
.
1
%
LDA
exp
0GPa
Vexp
Ad hoc correction to DFT results…
(perovskite)
0GPa
LDA
V
K
V
0GPa
LDA
0GPa
exp
K
0GPa
exp
2.5GPa
0GPa
V
V

V


1
.
1
%
LDA
exp
0GPa
Vexp
but…
K
2.5GPa
LDA
 257GPa  K
0GPa
exp
!!!...
Ad hoc correction to DFT results…
(perovskite)
0GPa
LDA
V
K
V
0GPa
LDA
0GPa
exp
K
0GPa
exp
2.5GPa
0GPa
V
V

V


1
.
1
%
LDA
exp
0GPa
Vexp
but…
K
2.5GPa
LDA
 257GPa  K
KLDA (V )  Kexp (V )
0GPa
exp
?!
!!!...
Ad hoc correction to DFT results…
(perovskite)
0GPa
LDA
V
K
2.5GPa
0GPa
V
V

V


1
.
1
%
LDA
exp
0GPa
Vexp
V
0GPa
LDA
0GPa
exp
K
0GPa
exp
but…
K
2.5GPa
LDA
 257GPa  K
KLDA (V )  Kexp (V )
0GPa
exp
?!
PLDA (V )  Pexp (V )  C
!!!...
EoS for Perovskite
C = 2.5 GPa
EoS for Ilmenite
C = 1.9 GPa
Calc.:
Karki & Wentzcovitch, 2002.
Exp.:
Reynard et al., 1996
Ad hoc correction to Pc…
(ilmenite to perovskite)
pv
ideal
F
(V )  F
pv
LDA
(V )  2.5V  C'
il
il
Fideal
(V )  FLDA
(V )  1.9V  C' '

Pc at 300K should increase
(not really conclusive…!!)
c
i
j
300 K
1000K
2000K
3000 K
4000 K
Cij(P,T)
(Oganov et al,2001)
(Wentzcovitch, Karki, Cococciono, de Gioroncoli, 2003)
…IMPORTANT: structural parameters and phonon frequencies
depend on volume alone!!
• Structures at high P are determined at T= 0
P(V,0)
• P’(V,T’) within the QHA
• At T 0…
V(P’,T’)=V(P,0)

structure(P’,T’) = structure(P,0)
Corresponding States
Comparison with Experiments
(Ross & Hazen, 1989)
o
Calc.
o
o
77 K < T < 400K
0 GPa < P < 12 GPa
Comparison with Experiments
(Ross & Hazen, 1989)
o
Calc.
77 K < T < 400K
0 GPa < P < 12 GPa
o
o
LDA
Exp.
LDA
+ZP
(Funamori et al., 1996)
300 K < T < 2000 K
21 GPa < P < 29 GPa
(Fiquet et al., 1998)
300 K < T < 2000 K
26 GPa < P < 58 GPa
Predictions a,b,c(P,T)
4000 K
3000 K
2000 K
1000 K
300 K
Summary
LDA + QHA is a good and useful FP method for high P,T
thermodynamics (..lots of insights)
 The validity criterion based on  suggests avoidance of
phase boundaries
 Prediction of high P,T crystal structures through corresponding
states
Acknowledgements
Bijaya B. Karki (LSU)
Stefano de Gironcoli, Stefano Baroni, Matteo Coccocioni
(SISSA, Italy)
NSF-EAR and NSF-COMPRES, SISSA and INFM (Italy)