Заголовок слайда отсутствует

Download Report

Transcript Заголовок слайда отсутствует

“Geodetic and geodynamical research
in the Institute of Astronomy, RAS”
S.K.Tatevian
Warsaw, CBK
November 3, 2005
Velocities of the IGS (Russian) sites (INASAN / GIPSY OASIS)
Station
Trend (mm/year)
Time period
Latitude
Longitude
Height
ARTU
1999.5 – 2003.3
5.25  0.07
25.70  0.08
-1.42  0.30
BILI
1999.6 – 2003.3
-20.95  0.11
8.18  0.09
-1.26  0.20
IRKT
1996.0 – 2003.3
- 8.00  0.05
24.93  0.06
0.60  0.10
KSTU
1997.6 – 2002.0
- 5.9-  0.14
18.1  0.40
0.61  0.12
MAGO
1997.8 – 2003.3
-20.90  0.07
9.93  0.07
- 0.70  0.13
MDVO
1996.0 – 2003.1
10.82  0.05
22.87  0.05
- 0.18  0.15
MOBN
2001.3 – 2004.0
10.53  0.09
23.48  0.13
- 3.30  0.80
NRIL
2000.7 – 2003.3
- 3.38  0.11
22.15  0.14
1.42  0.48
NVSK
2000.5 – 2003.3
- 1.95  0.14
24 01  0.21
1.04  0.76
PETR
1998.7 – 2004.0
- 8.61  007
- 5.40  0.08
- 0.88  0.17
TIXI
1998.7 – 2003.3
-12.21  0.08
16.83  0.08
0.31  0.20
YAKT
2001.1 – 2004.0
-14.92  0 14
22.65  0 18
- 1.71  0.41
YSSK
1999.5 – 2004.0
-15.27  0.08
12.06  0.07
0.36  0 17
ZECK
1997.0 – 2003.3
10.69  0.05
26.42  0.06
3.31  014
ZWEN
1996.0 – 2003.1
9.70  0.10
23.81  0.09
- 0.79  0.12
Тable 2. Annual and semiannual amplitudes and phases of the Geocenter variations.
( GPS and DORIS data for 1993.0-2003.8; SLR for 1992.8-2000.2)
Technique.
Trend
Phase0
A, mm
Phase0.
mm
/year
5.60.6
33.81.1
2.40.3
341.212.1
-1.10.1
5.50.3
106.65.2
1.30.2
160.422.0
-1.70.1
2.40.1
304.411.0
18.50.3
356.41.1
-0.30.1
3.30.5
16.34.9
1.20.5
2011.2
-0.20.1
4.10.3
278.26.1
1.00.1
123.630.6
-0.40.1
4.20.3
339.28.4
7.00.5
187.53.4
-0.80.1
GPS
5.90.2
279.43.0
1.50.2
169.511.9
-2.20.1
SLR
5.50.5
197.42.7
1.20.4
6.016.8
0.60.1
22.83.2
230.10.7
15.42.1
176.28.9
1.80.6
11.60.1
316.619.2
6.62.7
178.724.4
1.70.7
GPS
17.30.4
107.62.8
8.20.2
120.76.4
4.80.2
SLR
3.50.5
82.96.8
2.10.6
194.59.4
1.20.2
SLR
DORIS
(INASAN)
DORIS
(IGN/JPL)
DORIS
(INASAN)
DORIS
(IGN/JPL)
Z
Semiannual
A, mm
DORIS
(INASAN)
DORIS
(IGN/JPL)
X
GPS
Y
Annual
Spectral signature of geocenter motion observed with DORIS and expected
from geophysical data. Colour code: light blue: ignwd03; blue: ignwd05; pink:
ina04wd01; brown: lcamd02; green: geophysical. A slope equal to -1 is the
signature of white noise
(from the report of the IDS center).
Схема сети пунктов ФАГС и ВГС
мыс Шмидта
Земля Франци Иосифа
Анадырь
Певек
Билибино
Марково
ОСЛО
о-в Октябрьской Революции
мыс Челюскин
КОПЕНГАГЕН
мыс Святой Нос
Мурманск
Чокурдах
СТОКГОЛЬМ
Алакуртти
Среднеколымск
Северный
БЕРЛИН
Октябрьский
Калевала
Святой Нос
Тикси
ХЕЛЬСИНКИ
Эвенск
ТАЛЛИН
Калининград
о. Колгуев
Кемь
Диксон
РИГА
Никольское
м. Меньшикова
Лахколамен
Светлое
Сеймчан
Сегозеро
Саскылах
Кресты
Пулково
Архангельск
ВАРШАВА
Псков
ВИЛЬНЮС
Нарьян-Мар
Амдерма
Хатанга
Мезень
Батагай
Усть-Нера
Новгород
Плесецк
Пикалево
Бологое
МИНСК
Усть-Цильма
Вел. Луки
Весьегонск
Сыня
Смоленск
Тверь
Унеча
Петропавловск-Камчатский
Норильск
Котлас
Гагарин
Жиганск
Оленёк
Венденга
Харовск
Хандыга
Салехард
Усть-Большерецк
Ярославль
Войвож
ЦНИИГАиК
КИЕВ
Нов. Уренгой
Северо-Курильск
Кинешма
Владимир
Ветлуга
Тула
Орел
Охотск
Сыктывкар
Чухлома
МОСКВА
Давыдово
Пущино
Магадан
Воркута
Верх. Тойма
Нелидово
Верх. Кривого
Транспортный
Вытегра
Якутск
Мураши
Туруханск
Вилюйск
Рязань
Муром
КИШЕНЕВ
Курск
Коренево
Ниж. Новгород
Тура
Елец
Воронеж
Пильна
Тамбов
Ртищево
Казанская
Поворино
Каменск-Шахтинский
Михайловка
Ростов-на-Дону
Ейск
Чернышевский
Саратов
Нижневартовск
Новопокровская
Красноуфимск
Ванавара
Уфа
Смирных
Полины Осипенко
Нижнешадрино
Тобольск
Самара
Нерюнгри
Бодайбо
Тюмень
Экимчан
Ильинский
Колпашево
Зимовники
Челябинск
Александров Гай
Чкаловский
Чумикан
Байкит
Междуреченск
Волгоград
Туапсе
о. Симушир
Ноглики
Алдан
Екатеринбург
Бугульма
Петров Вал
Ханты-Мансийск
Набережные Челны
Сызрань
Оха
Николаевск-на-Амуре
Олёкминск
Пермь
Ершов
Краснодар
Аян
Мирный
Серов
Ульяновск
Тамань
Анапа
Тутончаны
Ноябрьск
Казань
Агрыз
Пенза
Советский
Яр
Верхнеимбатск
Саранск
Ровенки
Юксеево
Яранск
Сасово
Белгород
Новая Чара
Енисейск
Курган
Верх. Баскунчак
Голышманово
Зея
Ставрополь
Усть-Кут
Сочи
Ургал 1
Карталы
Буденовск
Астрахань
Пятигорск
Южно-Сахалинск
Оренбург
Элиста
Зеленчук
Орск
Северное
Мариинск
Красноярск
Могоча
Братск
Тайшет
Свободный
Хабаровск
Багдарин
Северобайкальск
Омск
Максимовка
Артезиан
Известковый
Лагань
Новосибирск
Качуг
Зима
Усть-Баргузин
Пожарское
Карасук
Чита
ТБИЛИСИ
Новокузнецк
Абакан
Иркутск
Махачкала
ЕРЕВАН
о. Итуруп
Сов. Гавань
Бол. Невер
Спицино
Веселый Яр
Борзя
Бийск
Монды
Турий Рог
Улан-Удэ
Кызыл
Киевка
Кыра
Кызыл-Мажалык
БАКУ
Владивосток
Усть - Кокса
Краскино
УЛАН-БАТОР
ТОКИО
216 пунктов из них ФАГС 34 и 182 ВГС
Meansea-level along the coastline of the North-Polar and Pacific oceans
(Baltic vertical datum)
0
2000
4000
6000
8000
10000
12000
14000
EastSibirian sea
Chukotskoe
sea
Pevek
Beringovo
sea
-140
Distances along the coastline (km)
Okhotsk
sea
Vladivostok
-120
Barentsovo
sea
Japan sea
Nicolaevsk
na Amure
-100
Ambarchik
-80
T ixi
-60
Dixon
-40
Provideniya
Laptevykh sea
Pechenga
sea-level in c m
-20
Nagaeva
0
To avoid a dependence of the height system of the fundamental network from sea level fluctuations at
the reference point, the following method, based on the joint analysis of GPS/GLONASS measurements
and gravimetric data, is proposed.
The main idea of this approach may be described as follows. There is no fixed origin of the height system. It
is accepted that normal height H is equal to zero at that point of the Earth‘s physical surface, where the
real value of geopotential W0 is equal to the normal one (U0) at the surface of the general Earth’s ellipsoid.
In principle, the position of that point could be not known at all. Parameters of the general ellipsoid are
submitted to the condition:  d

0,
where  are the quasigeoid heights, obtained by gravimetric data
(Bursha et al.,1998) over the entire surface of the Earth.
The height system is determined by the total combination of geodetic points of the network. For every ipoint of the reference network the geodetic height HG relative to the reference ellipsoid (for GPS that is
WGS-84 ellipsoid with a=6378137m) is determined by the use of GPS/GLONASS measurements and
the normal height H
is estimated by the geometric levelling in the regional reference system (the
Crownstadt height system for Russia). At these points an equality of the geodetic heights HG and
heights, obtained as a sum of quasigeoid height and a normal height H , should be achieved.
the
For every i-point of the reference network the geodetic height HG relative to
the reference ellipsoid (for GPS that is WGS-84 ellipsoid with a=6378137m) is
determined by the use of GPS/GLONASS measurements and the normal
height H is estimated by the geometric leveling in the regional reference
system (the Crownstadt height system for Russia). At these points an equality
of the geodetic heights HG and the heights, obtained as a sum of quasigeoid
height and a normal height H , should be achieved. Then we can write the
next equations:
(1)
HiG  Hi   i  ae  Hi
where  is a quasigeoid height, ae – estimated correction to the semimajor
axis of the WGS-84 reference ellipsoid relative to the general Earth ellipsoid,
Hi - an estimated correction to the regional system of normal heights
relative to the general Earth’s ellipsoid.
The joint solution of the unlinear equations (1) for all ground sites, where the
given set of measurements is available, will enable to estimate corrections to
the national and to continental systems of normal heights and to determine the
corrections to the semiaxis of the general Earth ellipsoid. The surface of the
general Earth ellipsoid and its potential U0, considered like a normal one,
determines the height reference system.
The diagram of differences between quasigeoid heights, estimated only by the
EGM-96 gravity model, and quasigeoid heights, obtained with the use of mean
gravity anomalies by trapeziums 5’7.5’ in central zone. The residuals are at the
level of 0.4-0.5 m.
A profileразностей
of differences
of квазигеоида,
quasigeoid heights,
estimated
the EGM-96
Профиль
высот
вычисленный
поby
детальным
gravity model andданным
by the detailed
gravimetric
data,
along для
the 60o
гравиметрическим
и параметрам
модели
EGM-96
parallel
of Russian
territory
территории
России
по 60 параллели
1,0
Разности (м)
0,5
0,0
Diffr.
-0,5
-1,0
-1,5
35
50
65
80
95
Longitude
Долгота
110
125
140
155
Isolines of corrections for transformation to the global
system of normal heights
(European network)
С
ТОКГОЛ
Ь
М
Алакуртти
40
30
Калевала
20
10
Х
Е
Л
Ь
С
И
Н
КИ
ТА
Л
Л
И
Н
0
Ф
И
Кемь
Н
Калининград
С
К
-10
И
Й
З
А
Лахколамен
И
Л
В
Светлое
-20
Р
И
ГА
Сегозеро
Пулково
В
А
Р
Ш
А
В
А
Псков
В
И
Л
Ь
Н
Ю
С
Новгород
Плесецк
Пикалево
Вытегра
-30
Бологое
М
И
Н
С
К
Вел. Луки
Нелидово
Весьегонск
Смоленск
Гагарин
Унеча
Харовск
-40
Тверь
-50
Ярославль
Чухлома
М
ОС
КВ
А
Давыдово
ЦНИИГАиК
КИ
Е
В
Кинеш ма
Владимир
Ветлуга
Тула
Орел
Рязань
Муром
Курск
Коренево
Ниж. Новгород
Елец
Яранск
Сасово
Белгород
Воронеж
-40
-40
Ртищ ево
Ровенки
ОВ
СК
ОЕ
РЕ
Петров Вал
Черныш евский
0
Анапа
-10
Новопокровская
20
30
Туапсе
Ставрополь
Зеленчук
Наб
Самара
Ерш ов
10
Краснодар
-60
Сызрань
-30
-20
Ейск
Казань
Ульяновск
Саратов
Михайловка
-30
Ростов-на-Дону
Тамань
Пенза
Поворино
Каменск-Шахтинский
МО
Саранск
-50
Казанская
АЗ
Пильна
Тамбов
Абд
Волгоград
Зимовники
40
50
60
70
80
90
100
Буденовск
110
120
Александров Гай
Чкаловский
Верх. Баскунчак
Оренбург
Элиста
Астрахань
Пятигорск
Артезиан
К
А
С
П
И
Й
С
К
О
Е
М
О
Р
Е
Isolines of differences between the meanings of quasigeoid heights calculated
1) with the use of gravity models (EGM-95 and GAO-98) and
2) as a difference of an ellipsoidal height, obtained by GPS measurements at the core sites of the network, and a normal height, obtained from the precise
leveling.
The basic gravimetric network (I)
basic gravimetric sites
main gravimetric
(I)
пункты
основной sites
гравиметрической
сети 1 класса
Information on the Researches at the Geodynamic Test Area of the United Institute of High
Temperatures of the Russian Academy of Sciences ( OIVT RAS)
The main objectives of researches are geodynamic studies of Tien-Shan. These studies are of great social significance and
directed to the reconstruction of the up –to-date strained-deformed state of the litosphere. Due to high activity of the
endogenous and exogenous geologic processes in Tien-Shan the disasters like earthquakes, slides and oth., are take place.
These studies are carried out by the Scientific station of the OIVT RAS at Bishkek with a participation of more than 20
organizations of the USA, Kyrgyzstan and Kazakhstan.
The complex of investigations consists of:
1. Monitoring of seismic conditions with the use of 10 telemetric seismostations of the KNET network, located in a
region of the Northern Tien Shan. The seismological network KNET has been established in 1991 and is equipped with 10
wideband automatic stations of PASCAL type, working in a real time. Digital data of this network are regularly transmitted to
the San-Diego University of California. Studies of the spatial-temporal distribution of earthquake hypocenters are the main
objective of this seismic monitoring.
2.Studies of recent crustal movements with the use of space geodesy technique and GPS measurements.GPS network in
Tien Shan region was established in 1992. Subsequently it was expanded to the Kazakhstan platform and now this network
consists of 10 permanent and 355 points of periodic measurements.GPS and seismic data have been also compared with the
data of magneto–telluric sounding, and in particular with a geometry of the surface of a crustal conducting stratum, singled
out under the Tien Shan.
3. Electro-magnetic monitoring on the base of power current sources with the use of sounding methods at the distant and
at the nearest zones for the purpose of deformation processes studies at the depths till 25 km.
4. Studies of the depth structure of the Earth’s crust and upper mantle of Tien Shan. For this purpose Magneto-Telluric
Sounding (MTS), including regional profiles, running across Tien Shan, and detailed sounding at the recent active faults, are
carried out. Observations with the use of American low frequency equipment LIMS have been carried out at 20 points, that
allowed to increase the depth of investigations till 120-140 km and to study of the upper mantle structure peculiarities.
CRDF RQ1-2239
Studies and Predictions of the Volcano ELBRUS
Behavior.
1. Geophysical investigations:
- determination of positions and dimensions of the Mt.Elbrus and Shasta's magma-chambers on the base of
analysis of gravity and magnetic surveys and stationary earth tide gravity and tilt observations;
- investigation of the dynamics of the magmatic chamber evolution on the base of repeated absolute and
relative gravity and GPS-observations (determination of vertical and horizontal speed of the Earth's crust
blocks displacement along the selected profiles)
2. Geodetic investigations including GPS-measurements.
We expect that if magma-chamber exists under the volcano, the dynamics of its evolution ("upwelling" or
"sinking") could be fixed by systematic GPS - observations. Data on velocities of the uplift derived with a
help of GPS-observations will be compared with the results of repeated highly accurate absolute and
relative gravity observations and this will permit to specify the uplift mechanism which related to specify
the uplift mechanism which related to evolution of magma-chamber.
Based on these investigations the formation history of volcanos Elbrus, Shasta, Lassen (CAUCASUS area)
would be reconstructed; the features of chemical composition, evolution and petrogenesis of the lavas
which make up the volcanic centres would be revealed; the forecasting pattern of volcanic eruption will be
given.
Russian team of this Project will be represented by the Laboratory of Petrology of the IGEM; RAS, and by
the local Geologic survey expedition ( Essentuki).
Тектонические блоки Евразийской плиты по
спутниковым данным
Гипотетическое представление о вращении
континента