Transcript Folie 1

Rare Decays
Bs  
Bs  
0
B  K 
0
and their sensitivity to New Physics
Klassiker:
Bs     
B(Bs  ) 
106 tan6   M12/ 2 GeV4 (M12/ 2  M02 )3
hep-ph/0108037
SM : BR  (3.4  0.4) 10-9
mSUGRA Parameter:
M1/ 2 , M0 , (MA ) A0 , tan , sign
B(Bs  )  106 tan6   M12/ 2 GeV4 (M12/ 2  M02 )3
Light chargino bounds from
LEP, Radiative EWSB
LSP not neutral
hep-ph/0108037
arXiv:0712.1708 to PRL
< 9.3·10-8 95% CL
2 fb-1
< 5.8·10-8 95% CL
D0 Note 5344-Conf (2007)
Problem:
Untergrundunterdrückung

B0

B
Invariante Masse keine
ausreichende Diskriminate
Multivariate Analyse
Bs Impact
Parameter
Lifetime of B
Muon Impact
Parameter Sign.
DOCA between
muons
Muon Pion Likelihood (LL)
Muon Kaon Likelihood (LL)
Isolation
Geometry Likelihood
PID Likelihood
signal
bb inclusive
b b
BcJ/ 
M
3-dim. Binning:
signal
bb inclusive
  18MeV
• 4 Bins in Geometry LL
• 3 Bins in PID LL
• 5 Bin in invarianter Masse
Untergrund Ereignisse/Bin
Signalereignisse/Bin (BR)
Sensitivität
BR excluded at 90 % CL, i.e.
only background is observed
Exclude the interesting region between
10-8 and SM with little Lumi (~0.5 fb-1)
BR observed or discovered.
Observe (discover) SM BR with 3 (5)
after ~2 (~6) fb-1
Events after preselection cuts in
600 (60) MeV mass window
Radiative bs decays
Standard Model bs (bs):
• LH s-quark (RH s-quark)
• LH (RH) photons
BSM physics (SUSY, LR Models) could
lead to appreciable RH  component
 photon helicity probes BSM physics
Probing photon helicity:
• (Photon conversion)
• Time dependent ACP: Bs   
• Parity-odd triple correlations between photon
and 2 out of 3 hadrons in B (K+p+p)  decays
• b(X)
B0s  F
Erste Beobachtung von Bs
5.5
BR(Bs   )  (5.711..58
1.2
5
1.7 )  10
SM : (3.94  1.19)  105
(Ball et al.)
[1] hep-ph/0607258 [2] arXiv:hep-ex/0607071v1
Why this decay ?
SM
 polarization
CPV in decay
NP
predominantly right handed
left handed
components
<1%
10%-40%
Inclusive decays : theory  experiment
Exclusive decays theory  experiment 
B0 (B0bar)X0 
CPV in
very small
interference
mixingdecay
B0 (B0bar)X0 
Could be large
sensitive to NP
What do we expect at LHCb ?
Expected for one year of
measurement ( 2 fb-1 )
• have to fight background
• very good PID necessary, p0 rejection
• proper time resolution (Time dependent CPV   polarization)
• high trigger efficiency
• good offline selection
Reconstruction and Selection
Selection mainly based on
• two body kinematics
• geometrical cuts on pp-interaction PV and B-decay SV
Selection criteria maximize  with

SV
S
=
S+B
S: signal evts
B: background evts
F
PV
KK+
Some selection criteria…
Photon selection
• 2 body kinematics  hard ET()
spectrum
• from numerous p0 decay soft 
 Require ET() > 2.8 GeV
On the way to the 
• Charged tracks must NOT
come from PV (t of B)
• K+K- should come from SV
Some selection criteria…
On the way to the B
• pB = p p should point to PV
• use qB ( allow rather large qB as the SV resolution
is not good because of K’s !)
flight path
SV
qB
reconstructed p
PV
Background…
• large background from B0s  Fp0 und BK*p0
 use vector meson polarization
helicity of F  0 for B0s  Fp0
 F  1 for B0s  F
• define helicity angle qH
K+
B
qH
• sin2qH distribution for signals
F
cos2qH distribution for
correlated bkg
flat for combinatorial bkg
K-
And finally one gets…
13 min
B0 K0
B0 K0
Expect 68k signal
events for 2 fb-1 with
B/S < 0.6
Bs 
Expect 11.5k signal
events for 2 fb-1 with
B/S < 0.6
• red: true events
• blue : comb. bkg.
 Polarization
•
 from bs predominantly left-handed (SM: V-A
coupling of W boson)
•
e.g. in MSSM  can be largely right-handed
( doesn’t effect incl. radiative decay rate predicted by
SM)
•
helicity measurement via time-dependent CP
asymmetry, …
 Polarization
B(t )  M 0
amplitudes
A(B  M 0 L )  A cos e iL
A(B  M 0 R )  A sin e iR
A(B  M 0 R )  A cos e iL
A(B  M 0 L )  A sin e iR
tan 
A(B  M R )
A(B  M L )
R , L
Relative amount of „wrong photon polarization“
Weak phases (CP odd)
Time dependent decay rate
(Bq (Bq )  M  )  e
0
 qt 
qt

qt
 cosh
 A sinh
2
2

 C cos(mqt )  S sin(mqt )
Standard Model:
S  sin 2 sin
A  sin 2 cos
  M  R  L
 1

A  sin 2
C 0
CP Asymmetry
The CP asymmetry
From the time dependent decay rate one gets
The measurement of A determines the fraction
of ‘different-polarized’ photons !
LHCb Toy study:
A  0.2
for 2 fb-1
B0  K 0
sˆ 
s
mb
ˆ
,
m

b
mB2
mB
Interesting observable: Muon forward-backward Asymmetry
Asymmetrie:
M
2

hep-ph/9910221
sˆ 
„Zero crossing point:“
s
mB2
Generator Studie: 6.5 M Ereignisse.
Change in order to which Wilson
coefficients are calculated.
M2 mass distributiuon
SM
SUGRA
MIA SUSY
(lower lines = pure short
distance components)
MIA = Flavor violating SUSY, mass insertion approx.
Forward backward asymmetry
SM
SUGRA
MIA SUSY
MIA SUSY C10 >0
Upper/lower
lines C7 < 0 /
C7 > 0
A. Ali et al. hep-ph/9910221
K
p
K
0
B0

B

RMS  33m
K

p

K 0
B
0
RMS  97m
B


 sel   rec   sel  rec  6.1%  20.6%  1.3%
 Trigger   L0   L1  93%  95%  89%
S  1012  2  0.398 BR(B0  K 0)  BR(K 0  K p  )  tot
1.22  106
0.67
Non-resonant background:
Upper limit: BR < 4  10-7
B  Kp
173075 events / 2 fb-1
irreducible
Asymmetry
In kinematischer
Region II erwartet
man gleiche Afb
wie für K*ll
Q2 Verteilung für Daten-Set von
2 fb-1:
signal
Untergrund (fluktuiert),
flach in M
Bemerkung: Nicht-resonanter
Untergrund wird vernachlässigt.
Signal Ereignisse: 37001200
Untergund:
1100 250
(non-res ignoriert)
4m2  q2  9 GeV2
Statistische Signifikanz des Zero-Crossing Punktes:
(aus 10000 toy Experimenten)
Kein Untergrund:
0.41 GeV2
Mit Untergrund (kein non-res):
0.46 GeV2 / 0.27 GeV2
Systematische Effekte
sind bisher noch nicht
untersucht !!
s02 = 4.2  0.6 GeV2
AFB
Standardmodell:
2(10) fb1
2 fb-1
(s0) = 0.46
(s0) = 0.27 (10 fb-1)
s=m2 [GeV2]