Transcript Slide 1
Engineering drought-tolerant crops plants Eduardo Blumwald Dept. of Plant Sciences, University of California@Davis Observations: (i) Salt and Drought stress accelerate the senescence of plants. (ii) Stress modifies Sink/source relationships. (iii) Cytokinins delay leaf senescence. Hypothesis: In contrast to the common dogma that senescence is a beneficial process to plants during stress, it is possible to actually enhance the tolerant of plants to drought if the drought-induced senescence of leaves is delayed during the drought episode. Rationale: Based on the assumption that senescence is a type of cell death program that could be unnecessarily activated in different plants during stress and that suppressing it would enable plants to mount a vigorous acclimation response Strategy: Regulated IPT expression by a maturation- and stress-inducible promoter, could maintain optimal levels of cytokinin levels during stress, delaying stressinduced senescence. [IPT (isopentenyl transferase ) is the limiting factor for cytokinin biosynthesis] SARK IPT Wild-type and transgenic plants expressing PSARK::IPT plants after 15 days drought Treatment followed by 7 days re-watering. K Wild-type PSARK::IPT Oxidative Metabolism Conclusions WT SOD H2O2 O2 - O2 e- hn PSII PSI GSH H2O APX MDHAR AsA MDHA H2O NADP+ NADP+ GR DHAR NADPH DHA GSSG NADPH Oxidative Metabolism Conclusions 424 SOD H2O2 O2 - O2 e- hn PSII PSI GSH H2O APX MDHAR AsA MDHA H2O NADP+ NADP+ GR DHAR NADPH DHA GSSG NADPH WT During drought 2 1 Before Drought 15 d 13 d 8d 10 d 6d 4d 2d 15 d 13 d 8d During drought 15 d 13 d 10 d 8d 6d 4d 2d 15 d 13 d 10 d 8d 6d 4d 2d 45 d 43 d 40 d 38 d 36 d 34 d 32 d 0 During Rewat. Middle Leaves During drought Water Use Efficiency (WUE) BOTTOM LEAVES WT WT pSARK-IPT 3 2 1 Before Drought During drought Top Leaves During Rewat. 15 d 13 d 10 d 8d 6d 4d 2d 15 d 13 d 10 d 8d 6d 4d 2d 45 d 43 d 40 d 38 d 36 d 34 d 32 d 0 30 d 15 d 13 d 10 d 8d 6d 2d 4d During Rewat. mmol (CO2) mol (H2O) pSARK-IPT 15 d 13 d 10 d 8d 6d 4d 2d 45 d 43 d 40 d 38 d 36 d 34 d 10 d 1 Before Drought 35 30 25 20 15 10 5 0 32 d pSARK-IPT 2 During Rewat. Photosynthesis Rate (BOTTOM LEAVES) 30 d WT 3 30 d 15 d 13 d 10 d 8d 6d 4d 2d During drought mmol (CO2 ) mol (H2O) pSARK-IPT 15 d 13 d 10 d 8d 6d 4d 2d 45 d 43 d 40 d 38 d 36 d 34 d 32 d 30 d -2 -1 m mol (CO2)m s During Rewat. Water Use Efficiency (WUE) MIDDLE LEAVES WT Middle Leaves -2 -1 m mol (CO2)m s 6d During drought Bottom Leaves 40 35 30 25 20 15 10 5 0 Bottom Leaves 4d 0 During Rewat. Photosynthesis Rate (MIDDLE LEAVES) Before Drought pSARK-IPT 3 Top Leaves Before Drought WT 4 30 d a.g. 32 d a g. 34 d a.g. 36 d a.g. 38 d a.g. 40 d a.g. 43 d a.g. 45 d a.g. 2d mmol (CO2) mol (H2O) 15 d 13 d 8d 10 d 6d 4d 2d 15 d 13 d 8d 10 d 6d 4d 2d 45 d 43 d 40 d 38 d 36 d 34 d 32 d Before Drought Water Use Efficiency (WUE) BOTTOM LEAVES pSARK-IPT 35 30 25 20 15 10 5 0 30 d -2 -1 m mol (CO2)m s Photosynthesis Rate (TOP LEAVES) RESTRICTED AMOUNT OF WATER EXPERIMENTS PHOTOSYNTHESIS 120 umol CO2 m -2 s-1 40 30 20 10 APICAL LEAVES 100 80 60 40 20 0 0 7 10 15 20 25 30 35 40 45 50 55 60 65 70 75 7 Days ofLEAVES growth MIDDLE 25 100 10 40 20 0 0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Days of growth MIDDLE LEAVES 7 60 5 APICAL LEAVES 8 mmol CO2 m -2 s-1 15 10 9 8 7 6 5 4 3 2 1 0 7 10 15 20 25 30 35 40 45 50 55 60 65 70 75 MIDDLE LEAVES Days of growth 80 20 umol CO2 m -2 s-1 umol CO2 m-2 s-1 WATER USE EFFICIENCY mmol CO2 m -2 s-1 APICAL LEAVES 50 umol CO2 m-2 s-1 STOMATAL CONDUCTANCE 6 5 4 3 2 1 15 20 25 30 35 40 45 50 55 60 65 70 umol CO2 m -2 s-1 25 20 15 10 0 8 7 10 15 20 25 30 35 7 40 45 50 55 60 65 70 75 Days6of growth MIDDLE LEAVES 5 4 10 15 20 25 30 35 40 45 50 55 60 65 70 75 7 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Days of growth 100 BASAL LEAVES 5 0 7 75 Days of growth O2 m -2 s-1 umol CO2 m-2 s-1 30 10 BASAL LEAVES Days of growth BASAL LEAVES 8 7 80 mmol CO2 m -2 s-1 7 60 40 20 MIDDLE LEAVES 0 7 10 15 20 25 30 35 40 45 50 55 60 65 70 75 1000 ml WT 1000 ml IPT Days of growth 6 5 4 3 2 1000 ml WT 1 0 10007 ml 10 IPT 15 20 300 ml WT 300 ml IPT 25 30 35 40 45 50 Days of growth 55 60 65 70 75 A/Ci CURVES: 1000 ml - 30 days a.g. 0 10 20 30 40 50 60 300 ml - 40 days a.g. 40 30 20 10 0 0 20 40 60 300 ml - 60 days a.g. 40 30 20 10 0 0 20 40 Internal leaf [CO2] (Pa) 60 70 CO2 assimilation rate [μmol CO2.m-2s-1 CO2 assimilation rate [μmol CO2.m-2s-1 pSARK-IPT 40 30 20 10 0 300 ml - 30 days a.g. WT WT pSARK-IPT 40 30 20 10 0 0 10 20 30 40 50 60 70 50 60 70 50 60 70 300 ml - 50 days a.g. 40 30 20 10 0 0 10 20 30 40 300 ml - 70 days a.g. 40 30 20 10 0 0 10 20 30 40 Internal leaf [CO2] (Pa) “Photosyn Assistant” Program to determine factors limiting CO2 assimilation (Farquhar et al., (1980), Sharkey (1985), Harley and Sharkey (1991) and Harley et al. (1992) Vcmax = maximum rate of carboxylation by Rubisco Jmax = PAR-saturated rate of electron transport (based in NADPH requirements for RuBP regeneration) TPU = the rate of Triose Phosphate Utilization, indicating the availability of inorganic Pi for the Calvin Cycle WT umol CO2 m -2 s -1 Vcmax (maximum carboxylation rate of Rubisco) 150 pSARK-IPT 100 50 0 30 days a.g. 30 days a.g. 40 days a.g 50 days a.g. 60 days a.g. 70 days a.g. 1000 ml 300 ml TPU (Triose Phosphate Use) (availability of inorganic P for Calvin Cycle) Jmax (RuBP regeneration) 500 15 WT pSARK-IPT -2 s pSARK-IPT -1 400 300 umol m umol m -2 s -1 WT 200 100 10 5 0 0 30 days a.g. 30 days a.g. 1000 ml 40 days a.g 50 days a.g. 60 days a.g. 70 days a.g. 300 ml 30 days a.g. 30 days a.g. 1000 ml 40 days a.g 50 days a.g. 60 days a.g. 70 days a.g. 300 ml Vcmax (maximum carboxylation rate of Rubisco) 500 15 WT WT 400 100 50 WT pSARK-IPT pSARK-IPT umol m -2 s-1 pSARK-IPT umol m -2 s-1 umol CO2 m -2 s-1 TPU (Triose Phosphate Use) (availability of inorganic P for Calvin Cycle) Jmax (RuBP regeneration) 150 300 200 10 5 100 0 0 0 30 days a.g. 30 days a.g. 40 days a.g 50 days a.g. 60 days a.g. 70 days a.g. 1000 ml 30 days a.g. 30 days a.g. 40 days a.g 50 days a.g. 60 days a.g. 70 days a.g. 300 ml 1000 ml 300 ml 30 days a.g. 30 days a.g. 40 days a.g 1000 ml 50 days a.g. 60 days a.g. 70 days a.g. 300 ml CALVIN CYCLE -1.35 1.75 1.96 0.91 1.96 0.91 2.16 pSARK-IPT 300 ml vs WT 300 ml [Log2 (Ratio)] PHOTORESPIRATION C M P M M C Amino acids/flavonoids GA/IAA/etc. sugars GSH FIELD TRIALS – Brawley (Imperial Valley, CA) OWA ½ OWA 1/3 OWA 1/4 OWA Effect of restricted watering (% OWA) on yield of WT plants FW [g/plant] 330 a ab 280 b 230 c 180 130 1 0,9 0,8 0,7 0,6 0,5 0,4 Treatment [% of OWA] 0,3 0,2 Effect of restricted watering (% OWA) on yield of WT and pSARK-IPT plants FW [g/plant] 330 12% 280 13% 230 180 WT 47% T2-36 T4-24 130 1 0,9 0,8 0,7 0,6 0,5 0,4 Treatment [% of OWA] 0,3 0,2 Effect of restricted watering (% OWA) on yield of WT and pSARK-IPT plants DW [g/plant] 75 65 55 45 WT 35 T2-36 T4-24 25 1 0,8 0,6 0,4 Treatment [% of OWA] 0,2 Transgenic lines Collaborations: Cassava – Willi Gruissem (ETH Zurich) Cotton – Hong Zhang (Texas Tech Univ) Flowers – Ryohei Nakano (Okayama University, JAPAN) Alfalfa – INTA (Castelar, Argentina) Sugar cane – Judy Zhu (Hawaii Ag. Center) Dr. Rosa M. Rivero Ellen Tumimbang Rosa Jauregui Dr. Lianhai Fu UC Davis Genome Center Prof. Shimon Gepstein (Technion,Israel) Prof. Ron Mittler (Univ. of Nevada@Reno) Prof. H. Sakakibara (RIKEN, Tsurumi, Yokohama, Japan) Dr. Ann Blechl (USDA, Albany, CA) Will W. Lester Endowment