PowerPoint-presentation

Download Report

Transcript PowerPoint-presentation

Why is circumstellar interaction of SNe important?
Progenitors: Mass loss determines SN Type.
Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope),
Ib (only He core), Ic (only O core)
Ejecta structure: Shock dynamics probes density structure
of SN ejecta
Shock physics: Thermal radiation processes (X-rays)
Non-thermal radiation processes (radio)
Relativistic particle acceleration
Dust production
SN – GRB connection: GRB afterglow determined by circumstellar
environment of the SN.
Mass loss processes
I. Single stars
Blue SGs
u ~ 500 – 3000 km/s
dM/dt 10-7 – 10-5 MO /yr
Red SGs
u ~ 10 – 50 km/s
dM/dt 10-6 – 10-4 MO /yr
Superwinds (cf. AGB's): Heger et al (1997) find large amplitude
pulsations with several MO per 10,000 years dM/dt ~ 10-4 MO/yr
II Binaries
Winds
RL overflow, common envelope phases....
Best studied CS case: SN 1993J
SN 1993J
in M 81
3.6 Mpc
Evidence for CS interaction
Radio: Synchrotron spectrum
Wavelength dependent turn-on of emission
All types of core collapse SNe observed
SN 1993J
IIb
SN 1979C
IIL
1.3 cm
21 cm
1.3 cm
21 cm
Montes et al 2000
Van Dyk et al 1994,
Weiler, Panagia, Sramek 2002
Sramek (2002)
All types of core collapse SNe detected (IIP, IIL, IIn, Ib, Ic).
No Type Ia SNe!
SN 1993J VLBI
17 May 1993
Bartel et al
Marcaide et al.
3 Jun 1998
Optical Type IIb
Filippenko et al 1994
Fransson et al 2004
Transition from Type II to
Type Ib
Box-like line profiles

narrow emitting shell
Type IIn SNe
Narrow lines from
dense CSM.
Strong CS
interaction.
SN 1993J ROSAT PSPC
Zimmermann et al
Ejecta structure
SN 1987A
Power law for V > 3500 km/s   V-10
-
V-12
Chevalier (1982)
Chevalier & CF (1994)
ρej  r
n
ρcs r
2
(n3)/(n2)
R
t
s

1/(n2)
V
t
s
2
T
6
7
CS
 V
T
 2
10

10
K
T

1
.
4
x
10
reverse
4  K
CS
(
n

2
)
10
km/s


9
Shock structure
Fransson et al 1996
Chevalier & Blondin 1995
Line profiles
Broad line SNe: IIL, Ib
Narrow line SNe: IIn
(Filippenko 1997)
Two cases for the line widths
1.
ej >> CSM
Steady wind
Type IIL, IIb SN 1993J, SN 1979C
Reverse CD
Vrev
ejecta



CSM
V
V


V
rev
 blastblast
 ej
1
/2
Blast wave
Vs
CSM
Line width ~ Vej
2.ej << CSM
Type IIn… SN 1995N, SN 1998S
Blobs, rings, short-lived superwinds… SN 1987A



CSM
 V
V


V
rev
 blastblastLine width ~ Vblast << Vej
 ej
1
/2
SN 1993J X-rays
t < 50 days
kT ~ 100 keV
Lx  5x1040 erg/s 50 - 200 keV
2x1039 erg/s 0.1 - 2.4 keV
t > 200 days
kT ~ 1 keV
Lx  1x1039 erg/s 0.1 - 2.4 keV
Temperature (keV)
ROSAT 01. - 2.4 keV (Zimmermann et al 1994, Immler et al 2002)
ASCA 1 – 10 keV (Uno et al 2002)
COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994)
Chandra (Swartz et al 2002)
XMM/Newton (Zimmermann & Aschenbach 2003))
Transition from hard to soft spectrum!
Day after explosion
Zimmermann & Aschenbach 2003
X-ray evolution
CF, Lundqvist & Chevalier 1996
At 10 days: Only X-rays from outer, CS shock T~109 K
At 200 days: X-rays from reverse shock dominates T~107 K
Hard to soft evolution natural consequence of the cool shell
X-ray spectra useful probes of the
ejecta composition
solar
carbon zone
helium zone
oxygen zone
Nymark et al 2006
SN 1993J
Nymark, Chandra, CF 2007
data: XMM Zimmermann & Aschenbach
Chandra: Swartz et al 2003
CNO enriched H or He envelope
UV & optical line emission
Cool shell, reverse shock
partially ionized, T<7000K
H, Mg II, Fe II
SN ejecta
fully ionized  neutral, T ~ (1-3)x104 K
O III-IV, N III-V, Ne III-V
SN 1993J
HST (SINS) + Keck
Mg II
[O III] H
He I
Good fit with ejecta + cool, dense shell
Shock at ~ 10,000 km/s
Consistency of X-ray flux and UV/optical flux
Radio light curves
SN 1979C
IIL
Montes et al 2000
1.3 cm
SN 1993J
IIb
21 cm
Van Dyk et al 1994,
Weiler, Panagia, Sramek 2002
RADIO
.
M
Free-free
absorption by the CSM
n
(
r
)

r

V
t
e
exp
2
4

r
u
w
2

M

3


2

2
3
/
2

3

(

)

n
(
r
)

(

)
dr


T
V
t
exp
e


u
w


.
Twind ~ 105 K
(Lundqvist & CF 1989)
Good fit to Type IIL SNe
(SN 1979C, 1980K…..)
Reliable mass loss rates need
calculation of Twind
.
M

(

)

1

u
w
Synchrotron self-absorption
F  R 2 S ( )(1  e  ( ) )
S  j /   B 1/ 2 5 / 2
 ( )   5 / 2 B 3 / 2 N rel
F  R 2 B 1 N rel 
F  
F  5/ 2
  1
F  R 2 B 1/ 2 5 / 2   1


R

V
t&
(
,
t
)

1

B
(
t
),
N
(
t
)
exp
rel
SN 1993J
Fransson & Björnsson 1998
SSA + free-free
SSA only
Magnetic field and particle density in SN 1993J
nrel nwind
nrel ρVs2

1
 R

s

 G
B

64
15 

10
cm




92 
2
U

U

ρV

t
rel
rel
therm
rel s
8
m
R

t
m

(
n

3
)
/(
n

2
)
s
1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987)
Amplification of B-field behind shock. Turbulence? (Jun & Norman 1996)
2. UB/Utherm  0.15
3. Urel  Utherm
Model and SN 1993J VLA light curves
Assume: UB  Utherm, Urel  Utherm
Self-consistent calculation of rel. electron spectrum,
including all cooling processes, as well as radiative transfer
CF & Björnsson 1998
Obs: VLA: van Dyk et al 1994,
Weiler, Panagia, Sramek 2002
csm  r-2 OK!! No evidence for mass loss variations or s  2.
2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays
3. Injection spectrum nrel  -2.1. Synchrotron cooling steepens this!
Free-free vs synchrotron self-absorption
Chevalier 1998
FF
SSA
VLBI and H velocity for different ejecta models
Red = H
Black = VLBI/1.3
VLBI and H velocity evolution require a
steep density gradient at ~ 13,000 km/s
Mass loss rates
Type IIP's dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK
Type IIL's dM/dt  2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1).
'super wind' (Heger et al)
t = Vs/u tobs  5x102 tobs > 104 / (u/10 km s-1) yrs
i.e., several MO lost
Type IIn's dM/dt  10-4 -10-3 MO yr-1 (for u = 10 km s-1). super wind
Clumping (Chugai)?
Asymmetric wind (Blondin, Chevalier, Lundqvist)?
Type Ib/c's dM/dt 10-7 - 10-5 MO yr-1 (for u = 1000 km s-1). WR stars?
Mass loss rate uncertain
CNO burning
SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn)
all have N/C >> 1
(Fransson et al 1989, 2001, 2004)
SN 1998S
HST (SINS)
SN 1998S N/C ~ 6
SN 1995N N/C ~ 4
SN 1993J N/C ~ 12
SN 1987A N/C ~ 5
SN 1979C N/C ~ 8
Solar
N/C ~ 0.25
N/C increases with mass loss
40 M at ZAMS
N/C >> 1  CNO burning 
heavy mass loss + mixing
Meynet & Maeder 2003
40 M at ZAMS
Meynet & Maeder 2003
N/C strong fcn of mass loss
N/C >> 1  CNO burning 
heavy mass loss + mixing
SN 1993J model
Woosley et al 1994
N/C strong fcn of mass loss
Meynet & Maeder 1992
N/C >> 1  CNO burning 
heavy mass loss + mixing
SN 1993J model
Woosley et al 1994
Conclusion of CNO:
SN 1993J model
Woosley et al 1994
Progenitors must have lost
most of the hydrogen envelope
before explosion
Confirms mass loss as the
important factor for the SN Type
SN 1987A ring collision
SAINTS collab.
Origin of the rings
R ~ 1018 cm, Vexp ~10 km s-1 tdyn ~2x104 years
N/C ~ 5
Origin (?): Merger inducing the equatorial mass
loss and outer rings (Podziadlowski 1992,
Heger & Langer 1998, Morris & Podziadlowski 2005)
Can this happen in a Ic progenitor?
Late SN2001em emission (Chugai & Chevalier 2006)
Chandra & ATCA
Park et al
Manchester et al
Dust emission
Gemini S + Spitzer
Bouchet et al 2006
Spitzer
11.7 
18.3 
T ~ 166 K
Si feature
collisionally heated
VLT/UVES
FWHM ~ 6 km s-1
Seeing 0.5-0.8”
Resolves N/S
Gröningsson et al 2006
Gröningsson et al 2006
H
[O III] 5007
narrow
broad
He I
Narrow FWHM ~ 10 km s-1
Broad
from unshocked ring
Vmax 300-400 km s-1 from shocked ring (Pun et al 2002)
Reverse shock
Gröningsson et al (2006)
Smith et al (2006),
Heng et al (2006)
VLT/FORS
Dec 2006
2002
2000
Velocity (104 km/s)
Broad ~16,000 km/s emission from reverse shock going back into ejecta
Intermediate velocity lines from shocked ring
protrusions
Oct 2002
Gröningsson et al 2006
N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1.
Max extension ~ 300 km s-1
VLT/SINFONI
Adaptive optics integral field unit for J, H, K
March 2005
He I 2.06 
Kjaer et al 2007
J-band
Expansion velocities along ring
Coronal lines
Gröningsson et al 2006
VLT/UVES spectrum
Max. velocity ~ shock velocity
~ 300-400 km/s
Fe XIV  5303  Ts ~ 2x106 K
H, He I, N II, O I-III, Fe II, Ne III-V…..
Cooling, photoionized gas behind radiative shock into
ring protrusions
Hydrodynamics of ring collision
Borkowski et al 1997
Pun et al 2002
Optical emission from radiative
shocks into the ring material
Radio and hard X-rays from
reverse shock
Borkowski et al 1997
Vs = 350 km/s
Radiative shock structure
no = 104 cm-3
shock
photoion.
broad H, [OIII],…
photoion. precursor
narrow Ha, [N II], [O III]
coll. ioniz.
X-rays
Coronal lines
Post-shock densities ~5x106 - 107 cm-3. Agrees with nebular
diagnostics
shock
Te
Fe
Optical lines probe different temperature intervals in the
cooling gas behind the radiative shocks
Coronal line diagnostics
Gröningsson,
Nymark…
Shock velocity
Shock velocity into hot-spots 300 – 400 km s-1  Ts ~ 2x106 K
Coronal lines complement the X-rays to probe whole temp. range
X-rays
Chandra: Zhekov et al (2005, 2006)
also XMM by
Haberl et al
N VII, O VII-VIII, Ne IX-X, Mg XI-XII, Si XIII, Fe XVII…..
Two components:
High density (104 cm-3) kT ~ 0.5 keV +
Low density (102 cm-3) kT ~ 3.0 keV
Optical/UV from radiative shocks
Soft X-rays from radiative +
adiabatic shocked ring blobs
Hard X-rays and radio from
adiabatic reverse shock
A radiative shock gives X-rays,
UV, optical, IR
Expect correlation between
optical/UV and soft X-rays,
but not with hard and radio
Time evolution
Optical: Gröningsson et al
X-rays: Park et al 2005
Coronal lines and soft X-rays correlate. Soft X-rays from
hot-spots. Hard from reverse shock & blast wave
Cooling shocks
Line widths of low ionization ions increase with time
2000: ~ 250 km s-1 -> 2006: ~ 450 km s-1 .
Coronal lines ~ constant ~ 450 km s-1
Cooling shocks
3.4

1
V
 n
s
e 




t

8
yrs
cool

1
4 
3




300
km
s
10
cm



High velocity shocks seen in soft X-rays gradually become
radiative
Now, H up to ~ 450 km s-1 
ne up to ~ 4x104 cm-3
~ ring density
(Lundqvist & CF 96)
Expect this to continue to higher shock velocities
Narrow, unshocked lines
Unshocked ring ionized by SN shock breakout, then recombining
Ring is now ionized by X-rays from shocks. Come-back of narrow lines
Pre-ionized region
~ 5x1017 (n/104 cm-3 )-1 cm
Shock models:
Most of absorbed X-rays
in pre-shock gas are
re-emitted as [O III]
We are now starting to
see the re-ionization of the
ring!