Transcript Slide 1

UNIVERSITY OF NAIROBI
SCHOOL OF ENGINEERING
DEPARTMENT OF ENVIRONMENTAL AND BIOSYSTEMS ENGINEERING
FEB 540: ENGINEERING PROJECT
DESIGN OF AN OPTIMIZED SINGLE DRUM DRYER
STUDENT: WAITHAKA,VERONICA WAMBUI
REGISTRATION: F21/2488/2009
SUPERVISOR: JANUARIUS O. AGULLO
EMAIL: [email protected]
TEL: 0729007494
INTRODUCTION
A solution to the paradox of famine amidst rotting
surplus food is the instantaneous starches.
+
=
PROBLEM STATEMENT
There is a lack of appropriate and affordable
potato drying technologies in Kenya.
vs.
OBJECTIVES
Overall objectives
To design a sustainable optimized industrial single
drum dryer for producing potato flakes.
Specific Objectives
I.
II.
III.
To establish the pertinent parameters that
affect the design of a single drum dryer
To use the parameters obtained in (1) above to
size a single drum dryer for the manufacture of
potato flakes
To analyze the costs and benefits of the
resulting design
SITE ANALYSIS & INVENTORY
Ol Kalou, Nyandarua was a suitable
location for a potato flaking factory.
SITE ANALYSIS & INVENTORY-Cont’d
Potatoes
• Water
• Labour
• Electricity
• Transport
• Software
•
Kenya Counties Electrification (Knoema, 2014)
LITERATURE REVIEW
Amongst industrial dryers
the SDD is the best for
potato flaking.
Starchy
products
Flexible
SDD
versatile
Energy
efficiency
There are 4 parameters that affect
quality of potato flakes.
Temperature
 Residence time
 Slurry solids
 Thickness

(Quality potato flakes)
(Quality instant mashed potatoes)
METHODOLOGY
Moisture
removal
Sizing stand
BOQ
Residence
time
Sizing motor,
Drive belts
CBA
Drum size
and speed
Heater
sizing
RESULTS
Parameter
Result
Residence time
5 sec
Drum sizing
1.5m by 3.5m
Heater sizing
5 kW
Drum Thickness
0.0035m, hoop stress=72.6 MPa
Motor sizing
15 HP, 1500 rpm
Belt sizing
355.6, 71.12 and 55.88 mm
sheaves
Stand sizing
Steel sections
Formula
Q=(mcΔT + mL)/t
Belt configuration
Drive Belts
Part
Center
to
center Theoretical belt length
Actual belt length
distance(m)
(m)
Motor to pulley/sheave 1
1
2.65
2.663
Sheave 1 to sheave 2
1
2.65
2.663
Sheave 2 to sheave 3
1
2.65
2.663
Roller 1 to Chute stirrer
0.75
1.676
1.684
1.856
1.864
1.176
1.184
1.176
1.184
1.176
1.184
Drum to Roller1
Roller 1 to Roller 2
Roller 2 to Roller 3
Roller 4
0.84
0.5
0.5
0.5
Stand Design
Part supported
Load(N)
Area
Steel section
required(mm2)
Area
Moment of inertia
provided(mm2)
cm4
Roller 1
66.6
0.264
12x12x1
0.44
0.08
Roller 2
66.6
0.264
12x12x1
0.44
0.08
Roller 3
66.6
0.264
12x12x1
0.44
0.08
Roller 4
66.6
0.264
12x12x1
0.44
0.08
Knife
242.9
0.97
12x12x1
0.44
0.08
Electric element
49.05
0.20
12x12x1
0.44
0.08
Slurry Chute
11106.21
44.42
200x200x6
46.56
2923.35
Drum
5563.55
22.35
100x100x6
22.56
333.59
Stand Design cont’d
Load(N)
Bending Moment
Part supported
Roller 1
Roller 2
Roller 3
Roller 4
Knife
Electric element
Slurry Chute
Drum
Main beam
Maximum
Shear Stress
Maximum
Bending moment
deflection(m)
66.6
101.98
116.55
116.55
2.41E-02
101.98
116.55
116.55
2.41E-02
101.98
116.55
116.55
2.41E-02
101.98
116.55
116.55
2.41E-02
371.94
425.08
425.08
8.78E-02
75.11
85.84
85.84
1.77E-02
17006.38
19435.87
19435.87
1.10E-04
8519.19
9736.21
9736.21
4.82E-04
6539.35
15386.70
15386.70
66.6
66.6
66.6
242.9
49.05
11106.21
5563.55
18102
2.05E-05
Simulations
Graph of moisture content variation with time
Transient heat transfer(Tg, Tw and Ts
are air, wall and slurry temperatures
respectively)
BILL OF QUANTITIES
Part
Details
Supplier
Unit cost
No. of Units
Total cost
AC induction motor
15Hp, 1500rpm
Electrical
70,000
1
70,000
10,000
1
10,000
-3000
1
3000
-2500
1
2500
-2000
3
6000
-2500
1
2500
-3000
3
9000
Supermarket
Electric heater element
5kW high temperature heater
Electrical
Supermarket
3vx drive-belts
-2.663m
- Seal Belt
1.864m
-1.184m
-1.684m
Sheaves
D= 355.6mm
(where D is pitch diameter)
D=71.12mm
-1500
3
4500
D=155.88mm
-1000
1
1000
Atmega 328p, sensors, CB, LCD, LED, Nerokas
5000
1
5000
25,000
12
300,000
Automation components
Seal Belt
resistors, wires
Stainless steel
1200x2400mclass 316 gauge
Mild steel
12x12 hollow section
Insteel
500
13.58m
6,900
Mild steel
175x175 hollow section
Insteel
2,500
6m
15,000
Mild steel
200x200 hollow section
Insteel
3,000
2.4m
7,200
Roller Bearings(SKF)
GE50 ESX2LS
Seal belt
5,000
4
20,000
Roller Bearings(SKF)
GE20 ESX2LS
Seal Belt
2000
10
20000
TOTAL(Ksh)
482,600
COST BENEFIT ANALYSIS
Cost of materials=Ksh 482,600
 Cost of operation=Ksh 60,000
 Business/factory expenses=Ksh 4.58 million
 Total sales=Ksh 29 million
 Net profit=Ksh 24.3 million

DISCUSSIONS
Residence time
 Drum size
 Drum thickness
 Heater size
 Motor sizing
 Belt sizing
 Stand sizing

CONCLUSIONS
The objectives for the engineering project
were met.
 The parameters were identified as
temperature, residence time, thickness
and slurry solids concentration.
 The benefits outweighed the cost

DESIGN DRAWINGS
Assembled machine
Section diagram
Recommendations
Fabrication and testing of a prototype
 Adjustable drum-applicator roll clearance
 Variable speed drive
 Sustainable sources of power.

REFERENCES

Gas Technology Institute. (2011). High Efficiency Gas Fired Drum Dryer for Food Processing Applications.
California: California Energy Commision.

Abong', G. O., Kabira, J. N., Okoth, M. W., & Ogolla, J. (2011). Potential of Processing Potato Flakes from Popular
Potato Varieties. Nairobi: University of Nairobi.

Becchi, F. (2011). Lectures on Mechanics. Retrieved 01 2014, 01, from www.telerobot.it.

Budynas, R. G., & Nisbett, J. K. (2006). Mechanical Engineering Design. McGraw-Hill Companies, Inc.

Cording Jr., J., & Willard Jr., M. J. (1957). Patent No. US2787553 A. United States of America.

Gibson, S. (1994, September/October). Industrial Dryers: Sizing, Selection, Costs. Process Heating .

Goyal, S., Kumar, M., & Kaur, A. (2014).Thin Layer Drying Kinetics of Potato Mash. BEST: International Journal
of Management, Information Technology and Engineering(BEST:IJMITE) , 43-56.

Hughes, E. (2008). Electrical and Electronic Technology. London: Pearson Education Limited.

Jurendic, T., & Tripalo, B. (2012). Mathematical Modeling of Conductive, Convective and Irradiative Drying of
Cereal Based Baby Foods. Journal of Agriculture and Food Technology , 126-133.

Kakade, R. H., Das, H., & Ali, S. (2011). Performance Evaluation of a Double Drum Dryer for Potato Flake
Production. Journal of Food Science and Technology , 432-439.

Rodriguez, G.,Vasseur, J., & Courtois, F. (1996). Design and Control of Drum Dryers for the Food Industry.
Part2. Automatic Control. Journal of Food Engineering , 171-183.

Singh R, P., & Heldman, D. R. (2009). Introduction to Food Engineering. London: Elsevier Publishing.

Lienhard IV, J. H., & Lienhard V, J. H. (2006). A Heat Transfer Textbook (3rd Edition ed.). Cambridge: Phlogiston
Press.

Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Drying and Dehydration. Food and Process Engineering
Technology , 259-284.

Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Heat Transfer. Food and Process Engineering Technology ,
REFERENCES

Kakade, R. H., Das, H., & Ali, S. (2011). Performance Evaluation of a Double Drum Dryer for Potato Flake
Production. Journal of Food Science and Technology , 432-439.

Kalogianni, E. P., Xynogalos, A. V., Karapantsios,T. D., & Kostoglou, M. (2002). Effect of Feed Concentration
on the Production of Pregelatinized Starch in a Double Drum Dryer. Lebbensm-Wiss.u.-Technol. , 703-714.

Knoema. (2014). World Data Atlas. Retrieved 02 02, 2014, from Nyandarua - Households with Electricity:
http://knoema.com/atlas/Kenya/Nyandarua/Households-with-Electricity

Ktheisen, K. (2008, 12 16). International Potato Center:World Potato Atlas. Retrieved 02 02, 2014, from
Consultative Group on INternational Agricultural Research:
https://research.cip.cgiar.org/confluence/display/wpa/Kenya

Mang'oli, M. K. (2013). Principles of Electrification. FEB 442 . Kenya: University of Nairobi.

Motion System Design. (2001). Gears and Gear Drives. Retrieved 2013

Murage, G. (2014, 03 20). 1,000 km rural roads repaired in Nyandarua. The Star .

Songa, W. (2009, 11 30). Trends in Food Crop Agriculture and Government Responses to Food Insecurity
in Kenya. Kenya: Ministry of Agriculture, Kenya.

USDA. (2012, 01 January). Nutrient Data Laboratory. Retrieved March 1, 2014, from United States
Department of Agriculture: http://ndb.nal.usda.gov/ndb/search/list

Wolf, L., Kazimi, M. S., & Todreas, N. E. (2003, 12 23). Introduction to Structural Mechanics. Note L.4 .
Massachusettes, USA: Massachusettes Institute of Technology Department of Nuclear Engineerng.

Strolle, E., O., Cording J. , Eskew, R., K., Edwards, P. W.(1954) Potato Flakes. A New Form of Dehydrated Mashed
Potatoes. Retrieved October 2, 2013, from United States Department Of Agriculture:
http://wyndmoor.arserrc.gov/Page/1964/2256.pdf Strolle, E., O., Cording J. (1954) Moisture Equilibria of
Dehydrated Mashed Potato Flakes. Retrieved October 10, 2013, from United States Department Of
Agriculture: http://wyndmoor.arserrc.gov/Page/1964/2256.pdf

Kasiri, N. , Hasanzadeh, M., A. and Moghadam, M. (2004) Mathematical Modelling and Computer Simulation of

Abong’ G.,O, Kabira JN. Diversity and Characteristics of Potato Flakes in Nairobi and Nakuru, Kenya. Global
Journal of Science Frontier Research (D). 2012; 12(10):35-39.

Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Transient Heat Transfer. Food and Process Engineering
Technology , 143-162.

MacDonald, M. (2013) Project Report on Potato Flakes Processing. Retrieved November 11, 2013, from
Gujarat Agro Industries Corp. Ltd: http://www.gujagro.org/Portal/Tender/177/4_1_Project_ReportPotato_Flakes_Mfg.pdf

Lamberti, M., Geiselmann, A., Conde-Petit, A., Escher, F. (2004) Starch transformation and structure
development in production and reconstitution of potato flakes. LWT - Food Science and Technology. Volume 37,
Issue 4, June 2004, Pages 417–427.

Willard M., (1993) Potato processing: Past, present and future. American Potato Journal. May 1993,Volume 70,
Issue 5, pp 405-418.

Willard, M., J., Cording, J, Eskow, R.K, Edwards, P.W and Sultran, J., F. (1954) Potato Flakes. A new Form of
Dehydrated Mashed Potatoes. Review of Pilot Plant process. American Potato Journal January 1956,Volume
33, Issue 1, pp 28-31

Karel, M., Lund, D.B. (2005) Physical Principles of Food Preservation: Revised and Expanded. Marcel Dekker Inc.
USA.

Earle, R. L. (1983) Unit Operations in Food Processing. Retrieved October 24, 2013, from New Zealand
Institute of Food Science and Technology Inc.:
http://www.nzifst.org.nz/unitoperations/drying1.htm#httransfer

Long, C., Sayma, N. (2009) Heat Transfer. Chris Long, Naema Sayma and Ventus Publishing Co.

Tang, J., Feng, H., Shen, G. (2003) Drum Drying. Encyclopedia of Agricultural, Food, and Biological
Engineering. Marcel Dekker Ltd. DOI: 10.1081/E-EAFE 120007091.

Sanitary Design (2013) Modern expectations for the food industry. Retrieved October 31, 2013, from Sanitary
Design: http://www.sanitarydesign.org/principles.cfm

Cyr, A. (2009) Sanitary Design for food Safety. AIB 8 September/October 2009
THANK YOU!
DESIGN OF OPTIMIZED SINGLE DRUM DRYER
STUDENT: WAITHAKA,VERONICA WAMBUI
REGISTRATION: F21/2488/2009
EMAIL:[email protected]
TEL:0729007494