Transcript Slide 1
UNIVERSITY OF NAIROBI SCHOOL OF ENGINEERING DEPARTMENT OF ENVIRONMENTAL AND BIOSYSTEMS ENGINEERING FEB 540: ENGINEERING PROJECT DESIGN OF AN OPTIMIZED SINGLE DRUM DRYER STUDENT: WAITHAKA,VERONICA WAMBUI REGISTRATION: F21/2488/2009 SUPERVISOR: JANUARIUS O. AGULLO EMAIL: [email protected] TEL: 0729007494 INTRODUCTION A solution to the paradox of famine amidst rotting surplus food is the instantaneous starches. + = PROBLEM STATEMENT There is a lack of appropriate and affordable potato drying technologies in Kenya. vs. OBJECTIVES Overall objectives To design a sustainable optimized industrial single drum dryer for producing potato flakes. Specific Objectives I. II. III. To establish the pertinent parameters that affect the design of a single drum dryer To use the parameters obtained in (1) above to size a single drum dryer for the manufacture of potato flakes To analyze the costs and benefits of the resulting design SITE ANALYSIS & INVENTORY Ol Kalou, Nyandarua was a suitable location for a potato flaking factory. SITE ANALYSIS & INVENTORY-Cont’d Potatoes • Water • Labour • Electricity • Transport • Software • Kenya Counties Electrification (Knoema, 2014) LITERATURE REVIEW Amongst industrial dryers the SDD is the best for potato flaking. Starchy products Flexible SDD versatile Energy efficiency There are 4 parameters that affect quality of potato flakes. Temperature Residence time Slurry solids Thickness (Quality potato flakes) (Quality instant mashed potatoes) METHODOLOGY Moisture removal Sizing stand BOQ Residence time Sizing motor, Drive belts CBA Drum size and speed Heater sizing RESULTS Parameter Result Residence time 5 sec Drum sizing 1.5m by 3.5m Heater sizing 5 kW Drum Thickness 0.0035m, hoop stress=72.6 MPa Motor sizing 15 HP, 1500 rpm Belt sizing 355.6, 71.12 and 55.88 mm sheaves Stand sizing Steel sections Formula Q=(mcΔT + mL)/t Belt configuration Drive Belts Part Center to center Theoretical belt length Actual belt length distance(m) (m) Motor to pulley/sheave 1 1 2.65 2.663 Sheave 1 to sheave 2 1 2.65 2.663 Sheave 2 to sheave 3 1 2.65 2.663 Roller 1 to Chute stirrer 0.75 1.676 1.684 1.856 1.864 1.176 1.184 1.176 1.184 1.176 1.184 Drum to Roller1 Roller 1 to Roller 2 Roller 2 to Roller 3 Roller 4 0.84 0.5 0.5 0.5 Stand Design Part supported Load(N) Area Steel section required(mm2) Area Moment of inertia provided(mm2) cm4 Roller 1 66.6 0.264 12x12x1 0.44 0.08 Roller 2 66.6 0.264 12x12x1 0.44 0.08 Roller 3 66.6 0.264 12x12x1 0.44 0.08 Roller 4 66.6 0.264 12x12x1 0.44 0.08 Knife 242.9 0.97 12x12x1 0.44 0.08 Electric element 49.05 0.20 12x12x1 0.44 0.08 Slurry Chute 11106.21 44.42 200x200x6 46.56 2923.35 Drum 5563.55 22.35 100x100x6 22.56 333.59 Stand Design cont’d Load(N) Bending Moment Part supported Roller 1 Roller 2 Roller 3 Roller 4 Knife Electric element Slurry Chute Drum Main beam Maximum Shear Stress Maximum Bending moment deflection(m) 66.6 101.98 116.55 116.55 2.41E-02 101.98 116.55 116.55 2.41E-02 101.98 116.55 116.55 2.41E-02 101.98 116.55 116.55 2.41E-02 371.94 425.08 425.08 8.78E-02 75.11 85.84 85.84 1.77E-02 17006.38 19435.87 19435.87 1.10E-04 8519.19 9736.21 9736.21 4.82E-04 6539.35 15386.70 15386.70 66.6 66.6 66.6 242.9 49.05 11106.21 5563.55 18102 2.05E-05 Simulations Graph of moisture content variation with time Transient heat transfer(Tg, Tw and Ts are air, wall and slurry temperatures respectively) BILL OF QUANTITIES Part Details Supplier Unit cost No. of Units Total cost AC induction motor 15Hp, 1500rpm Electrical 70,000 1 70,000 10,000 1 10,000 -3000 1 3000 -2500 1 2500 -2000 3 6000 -2500 1 2500 -3000 3 9000 Supermarket Electric heater element 5kW high temperature heater Electrical Supermarket 3vx drive-belts -2.663m - Seal Belt 1.864m -1.184m -1.684m Sheaves D= 355.6mm (where D is pitch diameter) D=71.12mm -1500 3 4500 D=155.88mm -1000 1 1000 Atmega 328p, sensors, CB, LCD, LED, Nerokas 5000 1 5000 25,000 12 300,000 Automation components Seal Belt resistors, wires Stainless steel 1200x2400mclass 316 gauge Mild steel 12x12 hollow section Insteel 500 13.58m 6,900 Mild steel 175x175 hollow section Insteel 2,500 6m 15,000 Mild steel 200x200 hollow section Insteel 3,000 2.4m 7,200 Roller Bearings(SKF) GE50 ESX2LS Seal belt 5,000 4 20,000 Roller Bearings(SKF) GE20 ESX2LS Seal Belt 2000 10 20000 TOTAL(Ksh) 482,600 COST BENEFIT ANALYSIS Cost of materials=Ksh 482,600 Cost of operation=Ksh 60,000 Business/factory expenses=Ksh 4.58 million Total sales=Ksh 29 million Net profit=Ksh 24.3 million DISCUSSIONS Residence time Drum size Drum thickness Heater size Motor sizing Belt sizing Stand sizing CONCLUSIONS The objectives for the engineering project were met. The parameters were identified as temperature, residence time, thickness and slurry solids concentration. The benefits outweighed the cost DESIGN DRAWINGS Assembled machine Section diagram Recommendations Fabrication and testing of a prototype Adjustable drum-applicator roll clearance Variable speed drive Sustainable sources of power. REFERENCES Gas Technology Institute. (2011). High Efficiency Gas Fired Drum Dryer for Food Processing Applications. California: California Energy Commision. Abong', G. O., Kabira, J. N., Okoth, M. W., & Ogolla, J. (2011). Potential of Processing Potato Flakes from Popular Potato Varieties. Nairobi: University of Nairobi. Becchi, F. (2011). Lectures on Mechanics. Retrieved 01 2014, 01, from www.telerobot.it. Budynas, R. G., & Nisbett, J. K. (2006). Mechanical Engineering Design. McGraw-Hill Companies, Inc. Cording Jr., J., & Willard Jr., M. J. (1957). Patent No. US2787553 A. United States of America. Gibson, S. (1994, September/October). Industrial Dryers: Sizing, Selection, Costs. Process Heating . Goyal, S., Kumar, M., & Kaur, A. (2014).Thin Layer Drying Kinetics of Potato Mash. BEST: International Journal of Management, Information Technology and Engineering(BEST:IJMITE) , 43-56. Hughes, E. (2008). Electrical and Electronic Technology. London: Pearson Education Limited. Jurendic, T., & Tripalo, B. (2012). Mathematical Modeling of Conductive, Convective and Irradiative Drying of Cereal Based Baby Foods. Journal of Agriculture and Food Technology , 126-133. Kakade, R. H., Das, H., & Ali, S. (2011). Performance Evaluation of a Double Drum Dryer for Potato Flake Production. Journal of Food Science and Technology , 432-439. Rodriguez, G.,Vasseur, J., & Courtois, F. (1996). Design and Control of Drum Dryers for the Food Industry. Part2. Automatic Control. Journal of Food Engineering , 171-183. Singh R, P., & Heldman, D. R. (2009). Introduction to Food Engineering. London: Elsevier Publishing. Lienhard IV, J. H., & Lienhard V, J. H. (2006). A Heat Transfer Textbook (3rd Edition ed.). Cambridge: Phlogiston Press. Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Drying and Dehydration. Food and Process Engineering Technology , 259-284. Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Heat Transfer. Food and Process Engineering Technology , REFERENCES Kakade, R. H., Das, H., & Ali, S. (2011). Performance Evaluation of a Double Drum Dryer for Potato Flake Production. Journal of Food Science and Technology , 432-439. Kalogianni, E. P., Xynogalos, A. V., Karapantsios,T. D., & Kostoglou, M. (2002). Effect of Feed Concentration on the Production of Pregelatinized Starch in a Double Drum Dryer. Lebbensm-Wiss.u.-Technol. , 703-714. Knoema. (2014). World Data Atlas. Retrieved 02 02, 2014, from Nyandarua - Households with Electricity: http://knoema.com/atlas/Kenya/Nyandarua/Households-with-Electricity Ktheisen, K. (2008, 12 16). International Potato Center:World Potato Atlas. Retrieved 02 02, 2014, from Consultative Group on INternational Agricultural Research: https://research.cip.cgiar.org/confluence/display/wpa/Kenya Mang'oli, M. K. (2013). Principles of Electrification. FEB 442 . Kenya: University of Nairobi. Motion System Design. (2001). Gears and Gear Drives. Retrieved 2013 Murage, G. (2014, 03 20). 1,000 km rural roads repaired in Nyandarua. The Star . Songa, W. (2009, 11 30). Trends in Food Crop Agriculture and Government Responses to Food Insecurity in Kenya. Kenya: Ministry of Agriculture, Kenya. USDA. (2012, 01 January). Nutrient Data Laboratory. Retrieved March 1, 2014, from United States Department of Agriculture: http://ndb.nal.usda.gov/ndb/search/list Wolf, L., Kazimi, M. S., & Todreas, N. E. (2003, 12 23). Introduction to Structural Mechanics. Note L.4 . Massachusettes, USA: Massachusettes Institute of Technology Department of Nuclear Engineerng. Strolle, E., O., Cording J. , Eskew, R., K., Edwards, P. W.(1954) Potato Flakes. A New Form of Dehydrated Mashed Potatoes. Retrieved October 2, 2013, from United States Department Of Agriculture: http://wyndmoor.arserrc.gov/Page/1964/2256.pdf Strolle, E., O., Cording J. (1954) Moisture Equilibria of Dehydrated Mashed Potato Flakes. Retrieved October 10, 2013, from United States Department Of Agriculture: http://wyndmoor.arserrc.gov/Page/1964/2256.pdf Kasiri, N. , Hasanzadeh, M., A. and Moghadam, M. (2004) Mathematical Modelling and Computer Simulation of Abong’ G.,O, Kabira JN. Diversity and Characteristics of Potato Flakes in Nairobi and Nakuru, Kenya. Global Journal of Science Frontier Research (D). 2012; 12(10):35-39. Luther, W. R., Suter, D. A., & Brusewitz, G. H. (2004). Transient Heat Transfer. Food and Process Engineering Technology , 143-162. MacDonald, M. (2013) Project Report on Potato Flakes Processing. Retrieved November 11, 2013, from Gujarat Agro Industries Corp. Ltd: http://www.gujagro.org/Portal/Tender/177/4_1_Project_ReportPotato_Flakes_Mfg.pdf Lamberti, M., Geiselmann, A., Conde-Petit, A., Escher, F. (2004) Starch transformation and structure development in production and reconstitution of potato flakes. LWT - Food Science and Technology. Volume 37, Issue 4, June 2004, Pages 417–427. Willard M., (1993) Potato processing: Past, present and future. American Potato Journal. May 1993,Volume 70, Issue 5, pp 405-418. Willard, M., J., Cording, J, Eskow, R.K, Edwards, P.W and Sultran, J., F. (1954) Potato Flakes. A new Form of Dehydrated Mashed Potatoes. Review of Pilot Plant process. American Potato Journal January 1956,Volume 33, Issue 1, pp 28-31 Karel, M., Lund, D.B. (2005) Physical Principles of Food Preservation: Revised and Expanded. Marcel Dekker Inc. USA. Earle, R. L. (1983) Unit Operations in Food Processing. Retrieved October 24, 2013, from New Zealand Institute of Food Science and Technology Inc.: http://www.nzifst.org.nz/unitoperations/drying1.htm#httransfer Long, C., Sayma, N. (2009) Heat Transfer. Chris Long, Naema Sayma and Ventus Publishing Co. Tang, J., Feng, H., Shen, G. (2003) Drum Drying. Encyclopedia of Agricultural, Food, and Biological Engineering. Marcel Dekker Ltd. DOI: 10.1081/E-EAFE 120007091. Sanitary Design (2013) Modern expectations for the food industry. Retrieved October 31, 2013, from Sanitary Design: http://www.sanitarydesign.org/principles.cfm Cyr, A. (2009) Sanitary Design for food Safety. AIB 8 September/October 2009 THANK YOU! DESIGN OF OPTIMIZED SINGLE DRUM DRYER STUDENT: WAITHAKA,VERONICA WAMBUI REGISTRATION: F21/2488/2009 EMAIL:[email protected] TEL:0729007494