PROCEDURE DESIGN CRITERIA

Download Report

Transcript PROCEDURE DESIGN CRITERIA

PROCEDURE DESIGN
CRITERIA
Presented by
Eliane Belin
DGAC - ENAC
[email protected]
1
TABLE OF CONTENTS


Positioning method
Accuracy


Nominal trajectory





Waypoint tolerance
Stabilization distance
Path terminator
Strategy
Protection area
Check list
2
RNAV SYSTEM
VORDME
DME DME
GNSS
INS / IRS
A/C POSITION
3
DEFINITION OF RNAV VORDME
Reference facility
VOR/DME
D : Distance from reference facility to the waypoint
D1 : Distance from reference facility to the tangent point
D2 : Distance from the tangent point to the waypoint
D
D1
Nominal Track
D2
WAY-POINT
DME/DME POSITIONING
DME2
DME4
DME1
d1
DME3
5
Area of simultaneous use of
two DME stations
DME 2
30°
1NM
D
60°
D
DME 1
Update area for DME stations located at distance “D” apart
2 points given by the
intersection of the three LOPs
SVk : xk, yk, zk
SVi : xi, yi, zi
SVj : xj, yj, zj
GPS receiver location
7
TABLE OF CONTENTS



Positioning method
Accuracy
 Waypoint tolerance
Nominal trajectory





Stabilization distance
Path terminator
Strategy
Protection area
Check list
8
DIFFERENT CRITERIA
RNAV VOR-DME
RNAV DME-DME
Guidance material
DME DME / GNSS
RNAV GNSS
9
SYSTEM ACCURACY
HORIZONTAL VIEW
True Aircraft Flight Path
True Aircraft Position
Estimated
Flight Path
Estimated Position
XTT
ATT
FTT
Nominal Flight
Path
Nominal Aircraft
Position
XTT depends on FTT
10
WAYPOINT TOLERANCE
ATT
XTT
11
SYSTEM ACCURACY:
VOR/DME AND DME-DME
Ei : Stations Tolerance
Based on 2s (95%)
confidence limits
ST : System
computation
FTT : Flight Technical Tolerance
VORDME : ATT Calculation
Reference facility
ADT : Along DME Tolerance
AVT : Along VOR Tolerance
ST : System computationTolerance
VOR/DME
ADT
D1
D
Nominal Track
D2
ATT  AVT 2  ADT 2  ST 2
AVT
VORDME : XTT Calculation
Reference facility
VOR/DME
VT : VOR Tolerance
DT : DME Tolerance
FTT : Flight Technical Tolerance
ST : Sytem computation Tolerance
D1
D
Nominal Track
XTT  VT 2  DT 2  FTT 2  ST 2
D2
VT
DT
DME-DME : ATT and XTT
No reference to a DME/DME
couple
Altitude = previous segment
minimum altitude
Distance for calculation
=
Radio Horizon
D=1.23 x H (ft)
d = 0.25NM + 0.0125 xD
!
Only 2 DMEs available: multiply by 1.29
SUMMING UP
System accuracy:
VOR / DME
ATT =
XTT =
AVT
VT
2
2
 ADT  ST
2
2
 DT  FTT  ST
2
2
System accuracy:
DME / DME
2
ATT =
XTT =
d  ST
2
d
2
2
 FTT  ST
2
2
16
VORDME- DMEDME:
FTT and ST
VOR/DME DME/DME
FTT( Nm)
ST (Nm)
Initial
1
1
Intermediate
1
1
Final
0.5
0.5
API
0.5
0.5
0.5
0.25
17
VORDME - DME/DME
PROTECTION AREA WIDTH
XTT calculation
Initial Intermediate
1/2 AW = MAX( 2NM, 1.5 XTT + BV)
BV : 1NM
Final, Mapt and TP
1/2 AW = MAX( 1NM, 1.5 XTT + BV)
BV : 0.5NM
DESIGN OF PROTECTION
AREAS
SECONDARY AREA
IWP
IAWP
PRIMARY AREA
19
GNSS TOLERANCE
Space segment tolerance
Receiver tolerance
System computer
tolerance : ST
Flight technical
tolerance :FTT
20
DILUTION OF PRECISION
Number of satellites
in view
PRECISION
GEOMETRY
Satellite
Outage
21
INTEGRITY
Use of GNSS Position
Accuracy of the position
Integrity
IMAL Value
GNSS Position not to be used
IMAL : Integrity monitoring alarm limit
The value depends on the phase of flight
22
RAIM
Prediction
With
AUGUR
http://augur.ecacnav.com
LFPO. PARIS ORLY
Baro Aided Outages
24 May 2002 - 03:36:34 until 24 May 2002 - 03:41:34 UTC (00:05:00) DP: 4.949
Non-Baro Aided Outages
24 May 2002 - 03:36:34 until 24 May 2002 - 03:44:34 UTC (00:08:00) DP: 5.442
23
GNSS MODE
Terminal
ROUTE
en route
Terminal
descent
Approach
holding
climbing
approach
initial
taking off
landing
taxiing
airport A
airport B
IMAL is coupled with GNSS mode
24
GNSS : XTT - ATT
GPS MODE ROUTE
Waypoint
IAWP IAW
P
TERMINAL
Initial
fix
IWP
APPROACH
FAWP
MAWP
MAHWP
IMAL
2 Nm
3.7 Km
1 Nm - 1.9 Km
FTT
2 Nm
3.7Km
0.5 Nm - 0.9 Km
ATT=
IMAL
2 Nm
3.7 Km
1 Nm - 1.9 Km
XTT=
IMAL
+FTT
4 Nm
7.4 Km
1.5 Nm - 2.8 Km
0.6 Nm
1.1 Km
0.5 Nm
0.9 Km
1.5 Nm
2.8 Km
5 Nm - 9.3 Km
2 Nm
3.7 Km
1 Nm
1.9 Km
5 Nm
9.3 Km
Half width
8 Nm
area =
14.8 Km
2XTT
0.3
Nm
- 0.6
Km
0.3 Nm
0.6 Km
1Nm
1.9 Km
0.2 Nm
0.4 Km
0.5 Nm
0.9 Km
0.3 Nm - 0.6 Km
1 Nm
1.9 Km
24
KEY POINT 1
Sensor
PLAN FOR ALL SENSORS
ATT and XTT
Protection
area Width
26
TABLE OF CONTENTS


Positioning method
Accuracy


Nominal trajectory





Waypoint tolerance
stabilization distance
Path terminator
Strategy
Protection area
Check list
27

On board data base
•Aerodrome
data
Airspace
limits
Available
navaids
Flight
paths to follow
(charts)
ALL RNAV TRAJECTORIES ARE CODED
INTO THE DATA BASE
28
Next WP
Start of descent
Planned flight Path
Interception
29
FB TURN
Navigation
Performance
CRZ
FL350
GPS PRIMARY
Sensor
CLB FLT4567890
OPT
REC MAX
FL370
FL390
<REPORT
UPDATE AT
*[
]
BRG /DIST
---° /----.- TO [
]
PREDICTIVE
<GPS
GPS PRIMARY
REQUIRED ACCUR ESTIMATED
2.1NM
HIGH
0.16NM
GPS PRIMARY
30
CODING
PATH
CODING
CONSTRAINTS
CF : Course to fix
DF : Direct to fix
How to navigate
PATH TERMINATOR
31
Path Terminator concept

Transforms procedures into coded flight paths

Set of two letters

PT instructs to navigate from a starting point
 to
a specific point
 or
terminating condition
32
TF : Track between Fixes
33
DF : Direct to Fix
34
CF : Course to Fix
35
IF
TF
RF
DF
FA
CF
HF
HA
HM
PI
ARINC 424 PATH
TERMINATOR
CA
CI
CD
CR
FC
FD
FM
AF
VD
VA
VM
VI
VR
Initial Fix
Track between fix
Radius to fix
Direct to fix
Fix to an altitude
Course to fix
Hold to fix
Hold to altitude
Hold for clearance
Procedure turn to
intrecept
Course to altitude
Course to intercept
Course to dme arc
Course to VOR radial
Course from fix
Fix to DME arc
Vectors from fix
DME Arc to fix
Heading to DME Arc
Heading to altitude (
climb)
Heading (vectors)
Heading to intercept
Heading to VOR Radial
36
PATH TERMINATOR
TF
TF
CF
CF
DF
DF
CF
TF
TF
CF
DF
TF
CF
DF
TF : Track between fixes
CF : course to fix
DF : Direct to fix
37
KEY POINT 2
Type of waypoint
Nominal trajectory
Protection area
PATH Terminator
Be aware of coding influence
Real need of COMMUNICATION
with coding suppliers
38
TYPE OF WAYPOINTS
IAWP
IWP
FAWP
MAWP
MAHWP
HWP
AWP
DWP
39
TURN INITIATION DISTANCE
L2
L1


R
2
L
R
L1 = R.tan (  / 2 )
L2 = 5 . TAS / 3600
L=L1+L2
40
FLY-BY
BANK : 25°
TAS
Turn
angle
41
TURN STABILIZATION DISTANCE
L1= r1.sin
L2= r1.cos  .tg30°
L3 = r1 (1/sin30° - 2cos / sin60° )
L4 = r2 . tan15°
L5 = 10 . TAS / 3600
L = L1 + L2 + L3 + L4 + L5
30°
R2

60°
R1
L1
30°
30°
L2
L3
L4
L5
L
42
FLY-OVER
BANK : 15°
TAS
Turn
angle
43
WP1 : FLY-OVER
WP2 : FLY-BY
44
WP1 : FLY-BY
WP2 : FLY-BY
45
WP1 : FLY-OVER WP2 : FLYOVER
46
TABLE OF CONTENTS


Positioning method
Accuracy


Nominal trajectory





Waypoint tolerance
stabilization distance
Path terminator
Strategy
Protection area
Check list
47
STRATEGY
FLOATING WP
PROCEDURE
abatement
48
Holding shift from RWY axis
Segregation traffic
WPs floating
Distance for sequencing
49
STOCHOLM ARLANDA
50
NON RNAV
51
RNAV
52
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
Project CDA-evaluation
with KLM FMS data
Aircraft: B747-400
Procedure: 2000 ft
approach
Runway: 06
53
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
CONTINUOUS DESCENT
APPROACH
SUGOL
NORBI27.0 to THR
14.0 DME SPL
from
ARTIP
AMEGA
16.5 DME RTM FAP
27.0 to THR
OM
CH
21.0 DME PAM
RIVER
DETSI 27.0 to THR
54
Footprint B747-400, Conventional
2000 ft approach
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
10
Y (km)
5
0
-5
-10
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
X (km)
55.0 dB(A); 215.266
km²
65.0 dB(A); 65.423 km²
75.0 dB(A); 11.781 km²
55
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
Footprint B747-400, Conventional 3000 ft approach
10
Y (km)
5
0
-5
-10
-45
-40
-35 -
-30
-25
-20
X (km)
55.0 dB(A); 234.266
km²
65.0 dB(A); 74.945 km²
75.0 dB(A); 11.689 km²
-15
-10
5
-
0
5
56
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
Footprint B747-400, Continuous Descent Approach
10
Y (km)
5
0
-5
-10
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
X (km)
55.0 dB(A); 191.306
km²
65.0 dB(A); 40.414 km²
75.0 dB(A); 11.484 km²
57
Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR
FUEL CONSUMPTION PER FLIGHT PHASE
B747-400
Fuel consumption
Flight phase
(kg/km)
Cruise
~10
2000 ft /3000 ft approach
~30 (at horizontal segment)
CDA
~ 6 (before ILS glide slope)
FUEL CONSUMPTION PER FLIGHT PHASE
B737-300/400
Flight phase
Fuel consumption (kg/km)
Cruise
~2.5
2000 ft /3000 ft approach
~7 (at horizontal segment)
CDA
~2.5 (before ILS glide slope
58
KEY POINT 3
Operational issues
•Pilots needs
•ATC needs
•Environmental
aspect
Safety issues
•Minimum distance
•Coding
requirements
59
TABLE OF CONTENTS


Positioning method
Accuracy


Nominal trajectory





Waypoint tolerance
stabilization distance
Path terminator
Strategy
Protection area
Check list
60
PROTECTION AREA
WHAT’S NEW ?

Use of wind spiral for all turn protections

Max turn angle :120° (no reversal)

No bank angle delay for a fly-by WP

Protection deal with max TAS and low TAS
WHAT’ S REMAINING ?
Bank angle : 25° / 15°
Pilot reaction delay : 6 sec / 3 Sec
Descend and climb gradient
MOC
61
TURN AT FLY-OVER WP
30°
c
ATT
62
FLY-BY WP turn angle  90°
30°
A
A/2
ATT
ATT
R
S’
S’’
c
R.TAN(A/2)
R’
R ’’
63
FLY-BY
turn angle >
90 °
A
ATT
ATT
I
r
c
S’’
S’
r.tan(A/2)
A/2
D
R’
ID=r . TAN(A/ 2)
C=Center circle
r =Radiusof turn
r R’’ C
r
TF : PROTECTION AREA
c'
A
A
c WPTP2
R'
30°
L1
S'
S' L
L2
WPTP3
R
S''
S''
S
S
D
D
S
R"
CC
S''
Radius
R'
S'
R"
R
MAX(A/2,30°)
WP1
30°
= Radius
LL1
= Radius
. TAN(A/2)
WP4
L2 =reaction
Radius .+TAN(A/2)
c' : Pilot
Bank angle
c : Pilot reaction
If A<90° Then L1=Radius . TAN(A/2)
6
5
DF : PROTECTION AREA
C= Pilot reaction + bank angle delay
C
A/2
66
MISSED
APPROACH
SEGMENT

Some RNAV systems are disconnected in case of
missed approach
 Plan
a dead reckoning track
 Protection
area splays at 15° from earliest MAWP
 Complete
MOC within the secondary area (for class
A GNSS )
67
MISSED APPROACH
Area Width at
MAWP
+
15 °Splay from earliest
MAWP
COMPARE
Area Width at MATWP
> :Solution1
< :Solution2
68
Check list
A/C Equipment
Data in WGS84
Strategy
Nominal trajectory
Minimum distances
Path terminator
Minimal altitude
MOC
Slope
Protection area
XTT- ATT
Area width
Turning area
Earliest [R” - R’]
Latest [S” - S’]
Wind spiral
Low speed accomodation
Connecting point / WP
Flight simulation
69
My personal point of view
Users should gain
benefits from RNAV
Mature design criteria
are available
Safety relies on
communication and training
On line help : will exist
Ecacnav.com
RNP concept instead of
sensor concept
70
Any questions?
71
DILUTION OF PRECISION
GOOD GEOMETRIE
Uncertainty Area
BAD GEOMETRY
Uncertainty Area
72
WAYPOINT
 Expressed
 IAWP,

in WGS84 coordinates
IWP, FAWP, MAWP, MAHWP
Fly-over waypoint
Symbol

:
Fly-by waypoint
Symbol :
73
WP1 : FLY-OVER
WP2 : FLY-BY
Stabilisation distances are necessary
74
75
MISSED APPROACH
MAWP
S
O
C
TWP
15°
76
MISSED APPROACH
MAWP
S
O
C
TWP
15°
77
MISSED APPROACH
MAWP
S
O
C
TWP
15°
78
79