Transcript DCM
DCM: Advanced issues Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute for Empirical Research in Economics University of Zurich Functional Imaging Laboratory (FIL) Wellcome Trust Centre for Neuroimaging University College London Methods & models for fMRI data analysis, University of Zurich 27 May 2009 Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Timing errors & sampling accuracy • Integrating tractography and DCM • DCMs for electrophysiological data Model comparison and selection Given competing hypotheses on structure & functional mechanisms of a system, which model is the best? Which model represents the best balance between model fit and model complexity? For which model m does p(y|m) become maximal? Pitt & Miyung (2002) TICS Bayesian model selection (BMS) Bayes’ rule: p( y | , m) p( | m) p( | y, m) p ( y | m) Model evidence: p( y | m) p( y | , m) p( | m) d accounts for both accuracy and complexity of the model allows for inference about structure (generalisability) of the model integral usually not analytically solvable, approximations necessary Model evidence p(y|m) Gharamani, 2004 Generalisability of the model p( y | m) p( y | , m) p( | m) d p(y|m) Balance between fit and complexity a specific y all possible datasets y Model evidence: probability of generating data y from parameters that are randomly sampled from the prior p(m). Maximum likelihood: probability of the data y for the specific parameter vector that maximises p(y|,m). Approximations to the model evidence in DCM Maximizing log model evidence = Maximizing model evidence Logarithm is a monotonic function Log model evidence = balance between fit and complexity log p( y | m) accuracy(m) com plexity(m) log p( y | , m) com plexity(m) No. of parameters In SPM2 & SPM5, interface offers 2 approximations: Akaike Information Criterion: Bayesian Information Criterion: AIC log p( y | , m) p p BIC log p( y | , m) log N 2 AIC favours more complex models, BIC favours simpler models. No. of data points Penny et al. 2004, NeuroImage Bayes factors To compare two models, we can just compare their log evidences. But: the log evidence is just some number – not very intuitive! A more intuitive interpretation of model comparisons is made possible by Bayes factors: positive value, [0;[ p( y | m1 ) B12 p( y | m2 ) Kass & Raftery classification: Kass & Raftery 1995, J. Am. Stat. Assoc. B12 p(m1|y) Evidence 1 to 3 50-75% weak 3 to 20 75-95% positive 20 to 150 95-99% strong 150 99% Very strong The negative free energy approximation • Under Gaussian assumptions about the posterior (Laplace approximation), the negative free energy F is a lower bound on the log model evidence: log p( y | m) log p( y | , m) KLq , p | m KLq , p | y, m F KLq , p | y, m F log p( y | m) KLq , p | y, m The complexity term in F • In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. KLq( ), p( | m) 1 1 1 T ln C ln C | y | y C1 | y 2 2 2 • The complexity term of F is higher – the more independent the prior parameters ( effective DFs) – the more dependent the posterior parameters – the more the posterior mean deviates from the prior mean • NB: SPM8 only uses F for model selection ! BMS in SPM8: an example attention M1 stim M1 M2 M3 M4 M3 stim PPC V1 attention V1 V5 PPC M2 M2 better than M1 BF 2966 F = 7.995 PPC attention stim V1 V5 M3 better than M2 BF 12 F = 2.450 V5 M4 attention PPC M4 better than M3 BF 23 F = 3.144 stim V1 V5 Fixed effects BMS at group level Group Bayes factor (GBF) for 1...K subjects: GBFij BF (k ) ij k Average Bayes factor (ABF): ABFij K BF (k ) ij k Problems: - blind with regard to group heterogeneity - sensitive to outliers Random effects BMS for group studies: a variational Bayesian approach r ~ Dir(r; ) Dirichlet parameters = “occurrences” of models in the population Dirichlet distribution of model probabilities mk ~ p(mk | p) mk ~ p(mk | p) mk ~ p(mk | p) m1 ~ Mult(m;1, r ) Multinomial distribution of model labels y1 ~ p( y1 | m1 ) y1 ~ p( y1 | m1 ) y2 ~ p( y2 | m2 ) y1 ~ p( y1 | m1 ) Measured data Stephan et al. 2009, NeuroImage Task-driven lateralisation Does the word contain the letter A or not? letter decisions > spatial decisions • • • group analysis (random effects), n=16, p<0.05 whole-brain corrected Is the red letter left or right from the midline of the word? spatial decisions > letter decisions Stephan et al. 2003, Science Inter-hemispheric connectivity in the visual ventral stream Left MOG -38,-90,-4 Left FG -44,-52,-18 Right FG 38,-52,-20 LD|LVF 0.20 0.04 0.00 0.01 Right MOG -38,-94,0 0.07 0.02 LD>SD, p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) p<0.01 uncorrected MOG left LD Left LG -12,-70,-6 FG left FG right MOG right 0.27 0.06 0.11 0.03 0.00 0.04 0.01 0.03 LG left 0.01 0.01 LD>SD masked incl. with RVF>LVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) Stephan et al. 2007, J. Neurosci. RVF stim. 0.01 0.01 LG right LD Left LG -14,-68,-2 0.06 0.02 LD|RVF LVF stim. LD>SD masked incl. with LVF>RVF p<0.05 cluster-level corrected (p<0.001 voxel-level cut-off) LD MOG FG LD|LVF MOG FG LD|RVF MOG LD|LVF RVF stim. LD Subjects -30 -25 -20 LD LG LG LVF stim. RVF LD|RVF stim. m2 -35 -15 MOG FG LD LG LG FG LVF stim. m1 -10 -5 0 5 Log model evidence differences Stephan et al. 2009, NeuroImage p(r >0.5 | y) = 0.997 1 5 4.5 4 1 11.806 , 2 2.194 r1 0.843, r2 0.157 3.5 p(r 1|y) 3 2.5 2 1.5 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 r 0.6 1 0.7 0.8 0.9 1 LD|LVF Simulation study: sampling subjects from a heterogenous population m1 MOG • Population where 70% of all subjects' data are generated by model m1 and 30% by model m2 FG LD LD LG LG RVF LD|RVF stim. • Random sampling of subjects from this population and generating synthetic data with observation noise Stephan et al. 2009, NeuroImage LVF stim. LD m2 MOG • Fitting both m1 and m2 to all data sets and performing BMS MOG FG FG MOG FG LD|RVF LD|LVF LG LG RVF stim. LD LVF stim. A 18 true values: 1=220.7=15.4 2=220.3=6.6 16 14 12 mean estimates: 1=15.4, 2=6.6 10 8 B 1 true values: r1 = 0.7, r2=0.3 0.9 0.8 mean estimates: r1 = 0.7, r2=0.3 0.7 0.6 <r> 0.5 0.4 6 4 0.2 2 0.1 0 C 0.3 m1 0 m2 1 D m1 m2 700 0.9 true values: 1 = 1, 2=0 0.8 0.7 mean estimates: 1 = 0.89, 2=0.11 0.6 0.5 600 500 400 300 0.4 0.3 200 0.2 100 0.1 0 0 m1 m2 log GBF12 Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Timing errors & sampling accuracy • Integrating tractography and DCM • DCMs for electrophysiological data y y BOLD y activity x2(t) neuronal states t Neural state equation intrinsic connectivity modulation of connectivity direct inputs Stephan & Friston (2007), Handbook of Brain Connectivity hemodynamic model x integration modulatory input u2(t) t λ activity x3(t) activity x1(t) driving input u1(t) y x ( A u j B( j ) ) x Cu x x x u j x A B( j) C x u bilinear DCM non-linear DCM modulation driving input driving input modulation Two-dimensional Taylor series (around x0=0, u0=0): dx f f 2 f 2 f x2 f ( x, u) f ( x0 ,0) x u ux ... 2 ... dt x u xu x 2 Bilinear state equation: m dx (i ) A ui B x Cu dt i 1 Nonlinear state equation: m n dx (i ) ( j) A ui B x j D x Cu dt i 1 j 1 Neural population activity 0.4 0.3 0.2 u2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0.6 u1 0.4 x3 0.2 0 0.3 0.2 0.1 0 x1 x2 3 fMRI signal change (%) 2 1 0 Nonlinear dynamic causal model (DCM): 4 m n dx (i ) ( j) A ui B x j D x Cu dt i 1 j 1 2 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 3 1 0 -1 3 2 1 Stephan et al. 2008, NeuroImage 0 Nonlinear DCM: Attention to motion Stimuli + Task Previous bilinear DCM Attention Photic .52 (98%) .37 (90%) .42 (100%) Büchel & Friston (1997) 250 radially moving dots (4.7 °/s) Conditions: F – fixation only A – motion + attention (“detect changes”) N – motion without attention S – stationary dots V1 Motion SPC .56 (99%) .69 (100%) .47 (100%) .82 (100%) .65 (100%) IFG V5 Friston et al. (2003) Friston et al. (2003): attention modulates backward connections IFG→SPC and SPC→V5. Q: Is a nonlinear mechanism (gain control) a better explanation of the data? attention modulation of back- M1 PPC ward or forward connection? stim additional driving effect of attention on PPC? M3 stim M2 M2 better than M1 BF = 2966 V1 attention PPC Stephan et al. 2008, NeuroImage V1 V5 BF = 12 M3 better than M2 V1 V5 M4 bilinear or nonlinear modulation of forward connection? attention stim V5 PPC attention PPC BF = 23 M4 better than M3 stim V1 V5 attention MAP = 1.25 0.10 0.8 0.7 PPC 0.6 0.26 0.5 0.39 1.25 stim 0.26 V1 0.13 0.46 0.50 V5 0.4 0.3 0.2 0.1 0 -2 motion Stephan et al. 2008, NeuroImage -1 0 1 2 3 4 p( DVPPC 5,V 1 0 | y) 99.1% 5 motion & attention static motion & no attention dots V1 V5 PPC observed fitted Stephan et al. 2008, NeuroImage Nonlinear DCM: Binocular rivalry 0.7 0.6 rivalry 0.5 non-rivalry 0.4 0.3 0.02 -0.03 0.2 0.1 MFG 1.05 0 -2 FFA 1 2 3 4 5 6 7 2.41 -0.31 0.51 0 MFG p( DFFA ,PPA 0 | y) 99.9% 0.08 2.43 -1 0.30 0.6 PPA -0.80 0.7 0.5 0.4 0.04 -0.03 0.02 0.06 0.3 0.2 faces houses faces houses 0.1 0 -2 -1 0 1 2 3 4 5 6 7 MFG p( DPPA ,FFA 0 | y) 99.9% Stephan et al. 2008, NeuroImage FFA PPA MFG BR nBR time (s) Stephan et al. 2008, NeuroImage Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Timing errors & sampling accuracy • Integrating tractography and DCM • DCMs for electrophysiological data • • • • Two potential timing problems in DCM: 1. wrong timing of inputs 2. temporal shift between regional time series because of multi-slice acquisition slice acquisition Timing problems at long TRs/TAs DCM is robust against timing errors up to approx. ± 1 s – compensatory changes of σ and θh Possible corrections: – slice-timing in SPM (not for long TAs) – restriction of the model to neighbouring regions – in both cases: adjust temporal reference bin in SPM defaults (defaults.stats.fmri.t0) Best solution: Slice-specific sampling within DCM 2 1 visual input Slice timing in DCM: three-level model 3rd level z h(v, T ) sampled BOLD response 2nd level v g ( x, x , ) BOLD response 1st x f ( x, , u) neuronal response level h n h x = neuronal states xh = hemodynamic states n, h = neuronal and hemodynamic parameters Kiebel et al. 2007, NeuroImage u = inputs v = BOLD responses T = sampling time points Slice timing in DCM: an example 1 TR 3 TR 2 TR 4 TR 5 TR Default sampling t T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 1 TR 2 TR 3 TR 4 TR 5 TR Slice-specific sampling t T1 Kiebel et al. 2007, NeuroImage T2 T1 T2 T1 T2 T1 T2 T1 T2 Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Timing errors & sampling accuracy • Integrating tractography and DCM • DCMs for electrophysiological data Diffusion-weighted imaging Parker & Alexander, 2005, Phil. Trans. B Probabilistic tractography: Kaden et al. 2007, NeuroImage • computes local fibre orientation density by spherical deconvolution of the diffusion-weighted signal • estimates the spatial probability distribution of connectivity from given seed regions • anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region • If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003) 1.6 Integration of tractography and DCM 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 -2 -1 0 1 2 low probability of anatomical connection small prior variance of effective connectivity parameter 1.6 1.4 1.2 1 R1 R2 0.8 0.6 0.4 0.2 0 Stephan, Tittgemeyer, Knoesche, Moran, Friston, in revision -2 -1 0 1 high probability of anatomical connection large prior variance of effective connectivity parameter 2 LD|LVF FG (x3) probabilistic tractography FG (x4) LD DCM structure FG left * 24 1.50 102 24 43.6% LG (x2) LG left LG right 12* 1.17 102 12 34.2% LD|RVF RVF stim. FG right 13* 5.37 10 3 13 15.7% LD LG (x1) 34* 2.23 103 34 6.5% BVF stim. LVF stim. 6.5% v 0.0384 2 1.8 15.7% 1.6 connectionspecific priors for coupling parameters v 0.1070 1.4 1.2 1 0.8 0.6 34.2% 43.6% v 0.5268 v 0.7746 0.4 0.2 0 -3 -2 -1 0 1 2 3 anatomical connectivity m 1: a=-32,b=-32 m 2: a=-16,b=-32 m 3: a=-16,b=-28 m 4: a=-12,b=-32 m 5: a=-12,b=-28 m 6: a=-12,b=-24 m 7: a=-12,b=-20 m 8: a=-8,b=-32 m 9: a=-8,b=-28 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 10: a=-8,b=-24 m 11: a=-8,b=-20 m 12: a=-8,b=-16 m 13: a=-8,b=-12 m 14: a=-4,b=-32 m 15: a=-4,b=-28 m 16: a=-4,b=-24 m 17: a=-4,b=-20 m 18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 19: a=-4,b=-12 m 20: a=-4,b=-8 m 21: a=-4,b=-4 m 22: a=-4,b=0 m 23: a=-4,b=4 m 24: a=0,b=-32 m 25: a=0,b=-28 m 26: a=0,b=-24 m 27: a=0,b=-20 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 28: a=0,b=-16 m 29: a=0,b=-12 m 30: a=0,b=-8 m 31: a=0,b=-4 m 32: a=0,b=0 m 33: a=0,b=4 m 34: a=0,b=8 m 35: a=0,b=12 m 36: a=0,b=16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 37: a=0,b=20 m 38: a=0,b=24 m 39: a=0,b=28 m 40: a=0,b=32 m 41: a=4,b=-32 m 42: a=4,b=0 m 43: a=4,b=4 m 44: a=4,b=8 m 45: a=4,b=12 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 46: a=4,b=16 m 47: a=4,b=20 m 48: a=4,b=24 m 49: a=4,b=28 m 50: a=4,b=32 m 51: a=8,b=12 m 52: a=8,b=16 m 53: a=8,b=20 m 54: a=8,b=24 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 55: a=8,b=28 m 56: a=8,b=32 m 57: a=12,b=20 m 58: a=12,b=24 m 59: a=12,b=28 m 60: a=12,b=32 m 61: a=16,b=28 m 62: a=16,b=32 m 63 & m 64 1 1 1 1 1 1 1 1 1 0.5 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0 0.5 1 log group Bayes factor 600 400 200 log group Bayes factor 0 0 10 20 30 model 40 50 60 0 10 20 30 model 40 50 60 10 20 30 model 40 50 60 700 695 690 685 680 post. model prob. 0.6 0.5 0.4 0.3 0.2 0.1 0 0 m 1: a=-32,b=-32 m 2: a=-16,b=-32 m 3: a=-16,b=-28 m 4: a=-12,b=-32 m 5: a=-12,b=-28 m 6: a=-12,b=-24 m 7: a=-12,b=-20 m 8: a=-8,b=-32 m 9: a=-8,b=-28 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 10: a=-8,b=-24 m 11: a=-8,b=-20 m 12: a=-8,b=-16 m 13: a=-8,b=-12 m 14: a=-4,b=-32 m 15: a=-4,b=-28 m 16: a=-4,b=-24 m 17: a=-4,b=-20 m 18: a=-4,b=-16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 19: a=-4,b=-12 m 20: a=-4,b=-8 m 21: a=-4,b=-4 m 22: a=-4,b=0 m 23: a=-4,b=4 m 24: a=0,b=-32 m 25: a=0,b=-28 m 26: a=0,b=-24 m 27: a=0,b=-20 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 28: a=0,b=-16 m 29: a=0,b=-12 m 30: a=0,b=-8 m 31: a=0,b=-4 m 32: a=0,b=0 m 33: a=0,b=4 m 34: a=0,b=8 m 35: a=0,b=12 m 36: a=0,b=16 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 37: a=0,b=20 m 38: a=0,b=24 m 39: a=0,b=28 m 40: a=0,b=32 m 41: a=4,b=-32 m 42: a=4,b=0 m 43: a=4,b=4 m 44: a=4,b=8 m 45: a=4,b=12 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 46: a=4,b=16 m 47: a=4,b=20 m 48: a=4,b=24 m 49: a=4,b=28 m 50: a=4,b=32 m 51: a=8,b=12 m 52: a=8,b=16 m 53: a=8,b=20 m 54: a=8,b=24 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 m 55: a=8,b=28 m 56: a=8,b=32 m 57: a=12,b=20 m 58: a=12,b=24 m 59: a=12,b=28 m 60: a=12,b=32 m 61: a=16,b=28 m 62: a=16,b=32 m 63 & m 64 1 1 1 1 1 1 1 1 1 0.5 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0.5 0 0.5 1 0 0 0.5 1 Overview • Bayesian model selection (BMS) • Nonlinear DCM for fMRI • Timing errors & sampling accuracy • Integrating tractography and DCM • DCMs for electrophysiological data DCM: generative model for fMRI and ERPs Hemodynamic forward model: neural activityBOLD (nonlinear) Electric/magnetic forward model: neural activityEEG MEG LFP (linear) Neural state equation: x F ( x, u, ) fMRI Neural model: 1 state variable per region bilinear state equation no propagation delays ERPs Neural model: 8 state variables per region nonlinear state equation propagation delays inputs DCMs for M/EEG and LFPs • can be fitted both to frequency spectra and ERPs • models different neuronal cell types, different synaptic types (and their plasticity) and spikefrequency adaptation (SFA) • ongoing model validation by LFP recordings in rats, combined with pharmacological manipulations Example of single-neuron SFA Tombaugh et al. 2005, J.Neurosci. standards deviants A1 A2 Neural mass model of a cortical macrocolumn E x t r i n s i c i n p u t s Excitatory Interneurons mean firing rate mean postsynaptic potential (PSP) He, e g1 g2 Pyramidal Cells MEG/EEG signal He, e g3 g4 Inhibitory Interneurons Parameters: Hi, e Excitatory connection mean PSP mean firing rate Inhibitory connection e, i : synaptic time constant (excitatory and inhibitory) He, Hi: synaptic efficacy (excitatory and inhibitory) g1,…,g4: intrinsic connection strengths Jansen & Rit (1995) Biol. Cybern. propagation delays David et al. (2003) NeuroImage Intrinsic connections g5 Synaptic ‘alpha’ kernel Inhibitory cells in agranular layers x7 x8 x8 k e H e ( A B A L g 3 ) S ( x9 ) 2k e x8 k e2 x7 x10 x11 x11 k i H ig 5 S ( x12 ) 2k i x11 k i2 x10 x12 x8 x11 g4 g3 Excitatory Excitatory spiny spiny cellscells in granular in granular layers layers x1 x1x4 x4 x4 x 4k ) 2kk xx k x kee(( (ux)9 ) 2kCu HAe (g1 sA ( x ga1))S eH e x4 F L 9 g1 2 ee 14 x f ( x, u) 2 e 1 g2 Exogenous input u Sigmoid function Excitatory pyramidal cells in agranular layers x2 x5 Extrinsic Connections: x5 k e H e (( A B AL ) S ( x9 ) g 2 S ( x1 )) 2k e x5 k e2 x2 3 x6 Forward x6 k i H ig 4 S ( x12 ) 2k i x6 k i2 x3 x9 x5 x6 Backward Lateral David et al. 2006, NeuroImage Kiebel et al. 2007, NeuroImage Moran et al. 2009, NeuroImage Electromagnetic forward model for M/EEG Depolarisation of pyramidal cells Forward model: lead field & gain matrix x0 f ( x, u, ) LK Scalp data y g ( x, ) LKx0 Forward model Kiebel et al. 2006, NeuroImage DCM for steady-state responses • models the cross-spectral density of recorded data • spectral form of neuronal innovations (i.e. baseline cortical activity) are estimated using a mixture of white and pink (1/f) components • assumes quasi-stationary responses (i.e. changes in neuronal states are approximated by small perturbations around some fixed point) Frequency (Hz) • feature extraction by means of p-order VAR model 10 20 30 0 Time (s) 10 Moran et al. 2009, NeuroImage Validation study using microdialysis (in collaboration with Conway Inst., UC Dublin) - two groups of rats with different rearing conditions - LFP recordings and microdialysis measurements (Glu & GABA) from mPFC Controls mPFC Isolated mPFC Regular Glutamate Low Glutamate mPFC EEG 0.12 0.06 mV 0 -0.06 mPFC VTA Moran et al. 2008, NeuroImage Experimental data FFT 10 mins time series: one area (mPFC) blue: control animals red: isolated animals * p<0.05, Bonferroni-corrected Moran et al. 2008, NeuroImage Predictions about expected parameter estimates from the microdialysis measurements amplitude of synaptic kernels ( He) upregulation of AMPA receptors SFA (2) chronic reduction in extracellular glutamate levels EPSPs sensitisation of postsynaptic mechanisms Van den Pool et al. 1996, Neuroscience Sanchez-Vives et al. 2000, J. Neurosci. activation of voltage-sensitive Ca2+ channels → intracellular Ca2+ → Ca-dependent K+ currents → IAHP g5 sensitization of postsynaptic mechanisms Inhibitory cells in supragranular layers g 3 [29,37] g4 g4 Extrinsic forward connections u H e[3.8 6.3] (0.4) (0.04) Excitatory spiny cells in granular layers Excitatory spiny cells in granular layers g 1 [161, 210] (0. 13) g 2 [195, 233] (0.37) Excitatory pyramidal cells in infragranular layers 2 Control group estimates in blue, isolated animals in red, p values in parentheses. [0.76,1.34] (0.0003) Increased neuronal adaption: decreased firing rate Moran et al. 2008, NeuroImage Take-home messages • Bayesian model selection (BMS): generic approach to selecting an optimal model from an arbitrarily large number of competing models • random effects BMS for group studies: posterior model probabilities and exceedance probabilities • nonlinear DCM: enables one to investigate synaptic gating processes via activity-dependent changes in connection strengths • DCM & tractography: probabilities of anatomical connections can be used to inform the prior variance of DCM coupling parameters • DCMs for electrophysiology: based on neurophysiologically fairly detailed neural mass models Thank you