Transcript Document
Section 9 Members subjected to Combined Forces (Beam-Columns) Dr S R Satish Kumar, IIT Madras 1 SECTION 9 MEMBER SUBJECTED TO COMBINED FORCES 9.1 General 9.2 Combined Shear and Bending 9.3 Combined Axial Force and Bending Moment 9.3.1 Section Strength 9.3.2 Overall Member Strength Dr S R Satish Kumar, IIT Madras 2 9.2 Combined Shear and Bending Elastic Shear stress Elastic Bending stress a c b Plastic range Secondary effects on beam behaviour Dr S R Satish Kumar, IIT Madras 3 9.2 Combined Shear and Bending Sections subjected to HIGH shear force > 0.6 Vd a) Plastic or Compact Section M dv M d M d M fd 1.2 Ze f y m0 2 V / Vd 1 2 b) Semi-compact Section M dv Z e f y / m 0 Mfd = plastic design strength of the area of c/s excluding the shear area and considering partial safety factor V = factored applied shear force; Vd = design shear strength Dr S R Satish Kumar, IIT Madras 4 9.3 Combined Axial Force and Bending Moment DESIGN OF BEAM COLUMNS INTRODUCTION SHORT & LONG BEAM-COLUMNS Modes of failure Ultimate strength BIAXIALLY BENT BEAM-COLUMNS DESIGN STRENGTH EQUATIONS Local Section Overall Member Flexural Yielding Flexural Buckling STEPS IN ANALYSING BEAM-COLUMNS SUMMARY Dr S R Satish Kumar, IIT Madras 5 INTRODUCTION Occurrence of Beam Columns Eccentric Compression Joint Moments in Braced Frames Rigid Sway Moments in Unbraced Frames Biaxial Moments in Corner Columns of Frames y z x Dr S R Satish Kumar, IIT Madras 6 SHORT BEAM-COLUMNS fy fy = PM fy Py Axial compression Py = Ag*fy Dr S R Satish Kumar, IIT Madras fy fy fy MP Bending moment fy + fy fy Fc M Combined compression and bending, P&M Mp = Zp*fy 7 SHORT BEAM-COLUMNS Short column loading curve M = P e 1.0 P/Py Failure envelope P0/Py Pcl /Py O Mo/Mp Mmax/Mp 1.0 M/Mp M / MP 1.0 P / Py + 0.85 M / MP 1.0 P/P + M/Mp 1.0 (conservative) Dr S R Satish Kumar,yIIT Madras 8 LONG BEAM COLUMNS Non – Sway Frame M0 M0 P * 0 Mmax = Mo + P Dr S R Satish Kumar, IIT Madras Linear Non-Linear 9 LONG BEAM-COLUMNS Sway Frames 0 M M0 M = Mo + P Dr S R Satish Kumar, IIT Madras 10 LONG BEAM-COLUMNS M0/MP= 0.0 P/Pcr = 0.0 M0 A 1.0 0.1 P. Pcr 0.5 B 0.5 0.8 0.8 1.0 O 0 0 M max Cm M0 1 P 1 P 1 P P P PE E E Cm accounts for moment gradient effects Dr S R Satish Kumar, IIT Madras 11 LONG BEAM-COLUMNS 1.0 Short column loading curve Failure Envelope Fc/Pcs F0/Pcs Long columns loading curve Fcl /Pcs Eqn. 3 Mo/Mp Mmax/Mp 1.0 M / MP Dr S R Satish Kumar, IIT Madras 12 SLENDER BEAM-COLUMNS Modified Strength Curves for Linear Analysis Uniaxial Bending After correcting for sway and bow (P- and P-) After correcting for sway and bow (P- and P-) 1.0 Short column failure envelope Fc/Pcs Fcl/Pcs After correction for (P-) effect P* 1.0 Short column failure envelope Fc/Pcs A After correction for (P-) effect Fcl/Pcs P* My/Mpy 1.0 Minor axis bending Mx/Mpx 1.0 Major axis bending Dr S R Satish Kumar, IIT Madras 13 BEAM-COLUMNS / BIAXIAL BENDING Fcl/Pcs /r = 0 /r increases My/ Mpy Mx/Mpx Fig. 8 beam-columns under Biaxial Bending Dr S R Satish Kumar, IIT Madras 14 9.3 Combined Axial Force and Bending Moment 1 9.3.1 Section Strength My 9.3.1.1 Plastic and Compact Sections M ndy My Mz N 1.0 N d M dy M dz Mz 1.0 M ndz N My Mz fy /m0 1.0 N d M dy M dz fx. 9.3.1.3 Semi-compact section 2 9.3.2 Overall Member Strength 9.3.2.1 Bending and Axial Tension P KyM y KzM z 1.0 Md Pd M dy M dz M eff M T Z e c / A Dr S R Satish Kumar, IIT Madras 15 9.3.2.2 Bending and Axial Compression Cmy M y P Mz Ky K LT 1.0 Pdy M dy M dz Cmy M y C M P 0.6 K y K z mz z 1.0 Pdz M dy M dz Cmy, Cmz = equivalent uniform moment factor as per table 18 Also CmLT K y / z 1 ( y / z 0.2)n y / z 1 0.8n y / z K LT 1 0.1LT n y (CmLT 0.25) 1 0.1n y (CmLT 0.25) n y / z P / Pdy / z Dr S R Satish Kumar, IIT Madras 16 STEPS IN BEAM-COLUMN ANALYSIS Steps in Beam-Column Analysis Calculate section properties Evaluate the type of section Check using interaction equation for section yielding Check using interction equation for overall buckling Beam-Column Design using equivalent axial load Py,eq P Cmyu y m y M y Cmz mz M z Dr S R Satish Kumar, IIT Madras 17 SUMMARY Short Beam-Columns Fail by Section Plastification Slender Beam-Columns may Fail By Section Plstification Overall Flexural Yielding Overall Torsional-Flexural Buckling Intetaction Eqs. Conservatively Consider P- and P- Effects Advanced Analysis Methods Account for P- and P- Effects, directly & more accuraely Dr S R Satish Kumar, IIT Madras 18