Transcript Folie 1
7th DESY Workshop on Elementary Particle Theory Loops and Legs in Quantum Field Theory April 25 -30, 2004 Zinnowitz (Insel Usedom) Physics with DAFNE Wolfgang Kluge Institut für Experimentelle Kernphysik, Universität Karlsruhe Content 1. DAFNE 2. Experiments at DAFNE 3. Physics with DAFNE 3.1. DEAR 3.2. FINUDA 3.3. KLOE (DAFNE Exotic Atoms Research) (FIsica NUcleare a DAFNE) (K LOng Experiment) 3.3.1. Neutral Kaon decays _ 3.3.2. Hadronic cross sections e+ e- q q 4. DAFNE-2 5. Conclusions 1. DAFNE e+ e- _ g* q q f(1020) Te Te 510 MeV e- g * e+ f(1020) K+ K49.5 % o o f(1020) K Lo KSo ( K K ) 34.4 % f(1020) r p f(1020) p+ p- po f(1020) h g 12.9 % 1.9 % 1.3 % f(1020), JPC = 1- - _ q q (f) hadrons well defined quantum state: C(f) = -1 Ko K o 1 ( K pL 2 interferometry KSp K pS KLp ) DAFNE Cross section sf 3 mb , f-rate of 1.5 kHz at L = 5 ∙ 1032 cm-2 s-1 DAFNE Design number of bunches 120 2002 (KLOE) 51 lifetime (min) 120 40 70 bunch current (mA) 40 20 20 1.5 ∙1030 1.8 ∙1030 L bunch (cm-2s-1) 4.4 ·1030 2004 (KLOE) 110 L peak (cm-2s-1) 5.3 ∙1032 0.8 ∙1032 2.0 ∙1032 L integrated (fb-1) 5 (1 yr) 0.3 2 Main merit: tagging Ko Ko _ (KL KS, K+ K-) and vice versa 2. Experiments at DAFNE Detectors: 0. DEAR nuclear physics Kaonic hydrogen 1. KLOE particle physics hadronic cross sections 2. FINUDA nuclear physics hypernuclei, KN, K-atoms DEAR 3. Physics with DAFNE Production and decays of the lightest mesons (simplified scheme) p p p g 0- 1-- BR 49% / 34% f(1020) K+ KKo Ko g h(958) g h(547) g p po p g fo (980) ao (980) po w(782) BR 1% 0++ BR 15% r(770) 3.1. DEAR (DAFNE Exotic Atoms Research, not triggerable) Low-energy Kaon Nucleon scattering Test of chiral perturbation theory KN s-terms (extent of chiral symmetry breaking) ? Strangeness content of the nucleon from KN s-terms ? 1 % measurement of the shift e and a few percent measurement of the width G of the Ka line of Kaonic hydrogen and the first measurement of Kaonic deuterium e + i G/2 = 412 aK-p eV fm-1 e + i G/2 = 614 aK-d eV fm-1 From the shift the isospin dependent KN scattering lengths (with a few %) are obtained aK-p = (ao + a1) / 2 (isovector, isoscalar) aK-n = a1 Kaonic hydrogen DEAR results: Kaonic hydrogen Kaonic hydrogen spectrum after background subtraction: Kaonic hydrogen (world‘s best measurement) 1000 repulsive 800 X-ray 600 KpX 0 -500 DEAR G = 250 ±137 eV 200 e = - 323 ± 63 ± 11 eV G = 407 ± 208 ± 100 eV 400 attractive Iwasaki et al. 1997 e = - 200 ±45 eV width G[eV] 0 shift e [eV] 500 SIDDHARTA (future plans 2005-06) (SIlicon Drift Detector for Hadronic Atoms Research by Timing Application, being triggerable) precision measurement at the level of a few eV of 1s level shift of Kaonic hydrogen and first measurement of Kaonic deuterium measurement of the charged Kaon mass at the level of 10 keV light Kaonic atoms (He, Li, Be,…) other hadronic exotic atoms (Sigmonic hydrogen) 3.2. FINUDA (FIsica NUcleare a DAFNE) a fixed target experiment at a collider, uses K+ K- pairs (pK = 127 MeV / c) AZLAZ p L hypernuclei are produced via K stop hypernuclear spectroscopy to test theoretical models of LN potentials (measuring pp) hypernuclear decays to study weak processes in nuclear matter Weak decays of hypernuclei basic weak decays and reactions: L n po L n n n and and L p p L p n p G p : mesonic weak decays of hypernuclei, suppressed by Pauli blocking in medium heavy nuclei G o : p nonmesonic weak decays of hypernuclei (dominant in medium heavy nuclei, test of DI = 1/2 rule ?) lifetimes of hypernuclei / G tot A A L Z ( Z 1) p A A o L Z Z p Gn : A ( A 2) Z L Z Gp : A ( A2) ( Z 1) n L Z n n G tot G n G p G p- G p there exist very few measurements of Gn , Gp , Gp-, Gp+ p FINUDA hypernucleus formation: e+ e- g* f(1020) K+K- K stop AZLAZ p p- A ZZ p ( A 2)( Z 1) n p e+ e- K+ K- FINUDA hypernucleus formation: 6 Li 6 Li K stop p L d 6 L Li L4 He n+p 4 L He d+d K+ +n stop m Km+ d K+ d 12C K stop 12 L C p BL 0 preliminary BL = -10 MeV pp [ GeV/c] 3.3. KLOE (K LOng Experiment) 2000 statistics: 25 pb-1 KS physics: BR(KS p± e n) BR(KS p+ p-(g)) / BR(KS p p) 7 publications in Phys. Lett. B f radiative decays f f fo g, ao g h g, scalar mesons h g pseudoscalar mesons 2001 + 2002 statistics f r p p+ p- p r-parameters KS decays ( g g, p p p) KL decays, KL p p, KL g g KL lifetime Vus from K± and KL decays 500 pb-1 analyses in progress, first publications submitted s(e+e- p+ p-) via Initial State Radiation DAFNE-2 ? double ratio e (e/ e) semileptonic asymmetries (CPT test) KL KS interferometry future ? KLOE data taking in 2000-2002 pb-1 2000: 25 pb-1 80 106 f decays 2002 2001 2000 days of running 5 months of KLOE data taking in 2002: best value of Lpeak: 0.78 ∙ 1032 cm-2s-1 best L dt per day: 4.5 pb-1 2001: 170 pb-1 530 106 f decays 2002: 280 pb-1 870 106 f decays Events CP – invariance violating event KS p+ ptagging! KL p+ p- Initial State Radiation (ISR) e+ e- p+ p- g p+ KL ppp- KS p+ g p + 3.3.1 Neutral Kaon decays (tests of discrete symmetries and cPT) and Vus Semileptonic decays Ko p± e n : CPT test KS po po po: CP and CPT test R = G(KS p+ p): double ratio, do-d2 p-(g)) / G(KS p strong phase shifts KLOE: hep-ex / 0402030 chiral perturbation theory Test of DS = DQ rule (1st order weak interaction) CPT invariance Ko p± e n DS = DQ A(Ko p-e+ n) = a + b A(Ko p+e- n) = a*- b* DS DQ A(Ko p+e- n) = c + d A(Ko p-e+ n) = c*- d* = 0 if CPT holds Charge asymmetries AS,L G(p-e+n) S,L - G G(p-e+n)S,L + G AS += e2-(e K+ (p n)e S,L e dK + e b / a - -2n) (eS,L eK (pA+Le= CP AS - AL = 4 e dK 0 implies CPT e d*/ a) e dK + e b / a + e d*/ a) CPT in CPT in DS DQ CPT mixing decay KS p± e n events / MeV L 500 pb-1 events / MeV KS p-p+ data __ MC KS p-p+ data __ MC KS p-e+n KS p+e-n Emiss – c |pmiss| (MeV) N(p-e+ n) = 11531 181 Emiss – c |pmiss| (MeV) N(p+ e- n) = 11805 177 radiative corrections included in MC (no Eg cutoff) KS p± e n KLOE (L = 170 pb-1, 2001 data) BR(p- e+ n) = (3.54 ± 0.05stat ± 0.06syst) 10-4 BR(p+ e- n) = (3.54 ± 0.05stat ± 0.04syst) 10-4 BR(p e n) = (7.09 ± 0.07stat ± 0.08syst) 10-4 CMD-2: BR(p e n) = (7.2 ± 1.4) 10-4 BR(KS p e n) = BR(KL p e Phys. Lett. B 456 (1999) 90 n) (GL / GS) = (6.704 ± 0.071) 10-4 PDG group 2003 CMD-2 1999 L ?? PDG evaluation from KL KLOE 2002 KLOE 2003 6 7 8 10-4 Phys. Lett. B 535 (2002) 37 KS p± e n charge asymmetry AS - AL ~ 4 e dK 0 implies CPT KLOE: 170 pb-1 AS = (-2 ± 9stat ± 6syst) 10-3 AS not yet measured so far KTeV 2002: AL = (3.322 0.058 0.047) 10-3 CP LEAR: Re dK = (2.9 2.7) 10-3 if DQ = DS Re dK = (3.0 3.4) 10-3 if DQ DS KTeV 2002 AL ∙ 102 KLOE AS ∙ 102 CKM unitarity and Vus G.Isidori, hep-ph / 0311044 ± 1.2 % Most precise test of CKM unitarity comes from 1st row: PDG 2002: |Vud|2 + |Vus|2 + |Vub|2 ~ |Vud|2 + |Vus|2 = 1 – D = 0.9957 ± 0.0026 D = 0.0043 ± 0.0019 using |Vus|= 0.2196 ± 0.0026 and |Vud | = 0.9739 ± 0.0005 Brookhaven experiment E865 (2003) BR(K+ po e+ n (g) (4.87 ± 0.06) % by 2.3 s higher than PDG 2002: |Vus|E865 = 0.2272 ± 0.0023rate ± |Vus|E865 = 0.2238 ± 0.0033 |Vus|E865 = 0.2275 ± 0.0030 ) = (5.13 ± 0.02stat + 0.09syst + 0.04norm) % 0.0023lt ± 0.0007f+ BR(K+ p e+ n D = 0.0001 ± 0.0016 (g) A. Ali hep-ph/0312303 D = 0.0024 ± 0.0021 V. Cirigliano, H. Neufeld, H. Pichl, hep-ph/0401173 D = 0.0002 ± 0.0030 D. Bećirević, G. Isidori et al., hep-ph/0403217 ) = KS p± e n Unitarity band, based on Vud E 865 KLOE PDG 2002 (average) Vus 0.235 0.230 2s 0.225 0.220 0.215 1 0.210 1 Ke3 cPT up to p4 Keo3 2 Ke3 Keo3 H. Leutwyler, M. Roos, Z. Phys. C 25 (1984) 91 confirmed by lattice calculation D. Bećirević et al., hep-ph/0403217 K o p Vus f (0) = 0.960 ± 0.009 2 cPT up to p6 V. Cirigliano et.al. hep-ph/0401173 J. Bijnens and P. Talavera, Nucl. Phys. B 669 (2003) 341 K o p Vus f (0) = 0.981 ± 0.010 KLOE result in better agreement with Brookhaven K+ data than with PDG 2002 analysis S,L S,L K e3 K m K K 3 e3 m3 work in progress KS po p p : test of CP and CPT Uncertainty on KS p p p amplitude limits precision of CPT test (d). SM prediction: BR(KS po p p) = 1.9 10-9 present published result: BR(KS po p p) < 1.4 10-5 NA 48 BR(KS p p p) < 3.0 10-7 KLOE: BR(KS p p p) < 2.1 10-7 Unitarity (Bell-Steinberger relation): i ( lS lL ) K S | K L results in G S (1 i tan fsw) (ee i m d) f A (KS f ) f A( K L A ( K S f ) A( K L f ) (eS,L f) = e A limit on BR(KS p p p) at the level of 10-7 translates into a 2.5 fold improvement on the accuracy of m d ( < 2 10-5) assuming CPT invariance in the decay G o G o: K K D( mK o mK o ) mK 18 2 10 improvement D( m Ko mK o ) mK 5 1019 compare with mK 4 10 20 mPlanck R = G(KS p+ p-(g)) / G(KS p p) 2.221 0.014 2.236 0.003 0.015 PDG 2003 KLOE 2002 Phys. Lett. B 538 (2002) 21 KLOE 2002 half of double ratio R for e e/ e de e/ e R = 1.6 ∙·10-4) N( K L p p ) N( K S p p ) N( K L po po ) h N( K S po po ) hoo (dR / RKLOE 0.1 % 2 2 2 e e ' e ' ' 1 3 1 6 e e e e 2e ' e e. m. isospin breaking in K p p extract do – d2 taking into account radiative corrections Extraction of strong phase shifts do – d2 from KS p A - Ao ei do 2 3 Aoo A o 1 3 3 4 1 3 Ao ei do A2 ei d2 2 3 p extraction of K p p amplitudes must take into account effective cutoff on Eg for g in final state A2 ei d2 include isospin-breaking e.m. effects cI dI g AI ei dI ( AI dAI ) ei cI I A2 ei d2 gI = e.m. phase shift K p p decays actually measure co – c2 , for do – d2 theoretical input (go – g2) needed R G(KS p p ) o o G(KS p p ) 2 pc.m. c.m. poo 2 (56 8) Cirigliano et al. 2001 / G(p with w = A2 / Ao 1 / 20 do (47.7 d 21.5) cPT , scattering p p Colangelo et al. 2001 KLOE 2002 value for p-) 2 cos( do d2 ) 1 2 w 2 2 w cos( do d2 ) co c2 PDG G(p+ 2 1 w2 w p) (48 3) 3.3.2. Hadronic cross sections e+ e- q q Experiment: Theory: KLOE PHOKHARA H. Czyż, J. H. Kühn, G. Rodrigo et al. F. Jegerlehner et al. S. Jadach et al. Hadronic cross sections e+ e- q q g Determination of the hadronic vacuum polarisation, a contribution to precision tests of the SM of particle physics a) Precision experiment (g – 2)m Brookhaven E821 b) Running fine structure constant aQED (MZ) constraint on Higgs mass mHiggs effective Weinberg angle etc. Anomalous magnetic moment of muons am (gm 2) / 2 a/ 2p ... B field m+ q g q m+ g hadrons QED had weak new atheor a a a a m m m m m QED aQED m hadronic vacuum polarisation ahad m weak contribution aweak m contribution beyond SM anew m Hadronic vacuum polarisation The hadronic contribution to vacuum polarisation is dominated by low energy effects which cannot be obtained by perturbative QCD for low s but rather by experimental data of e+ e- annihilation into hadrons and / or by -decays evaluating the dispersion integral amm ahad m 3p R( s) 2 2 4 mp ds R( s) Kˆ ( s) s2 s tot (e e g * q q hadrons) s tot (e e g * m m ) up to some sufficiently high energies, typically 2…5 GeV, and by pQCD for higher energies 2 ˆ ( s) 0.63 at s 4mp ˆ ( s) 1.0 at s ) Kˆ ( s) being a smooth function ( K and K The energy denominator 1 / s 1 / E2 enhances dramatically low energy (non perturbative) contributions Status of g-2 as of Jan. 2004 hep-ex / 0401008 new value from BNL for m- Jan. 2004 previous result from BNL for m+ Aug. 2003 averaging the BNL results Jan. 2004 am- = 11 659 214 (8) (3) 10-10 am+ = 11 659 203 (6) (5) 10-10 am = 11 659 208 (6) 10-10 SM with e+ e- data am = (11 659 180.9 7.2had 3.5LBL 0-4QED+ew) 10-10 am = (11 659 179.4 8.6had 3.5LBL 0-4QED+ew) 10-10 am = (11 659 176.3 7.4had 3.5LBL 0-4QED+ew) 10-10 SM with data am = 11 659 195.6 5.8had 3.5LBL 0-4QED+ew) (6) 10-10 Davier et al., Dez. 2003 Jegerlehner et al., Dez. 2003 Hagiwara et al., Dez. 2003 Davier et al., Dez. 2003 Status of g-2 as of Jan. 2004 hep-ex / 0401008 Comparison between experimental values and theoretical predictions 230 220 210 e+ e- 200 190 m+ m- 180 average D J H 170 160 150 am - 11 659 000 10-10 SM using e+ e- data and E821 disagree by 2.7…3.0 s SM using data and E821 disagree by 1.4 s data from ALEPH, OPAL, CLEO, e+ e- data dominated by Davier et al., hep-ex / 0312065 Hagiwara et al., hep-ph / 0312250 Jegerlehner et al., Phys. Lett. B 583 (2004) 222 CMD-2 = (696.3 6.2aexphad ,LO 3.6rad) ∙ 10-10 ,LO = (692.4 5.9exp 2.4rad) ∙ 10-10 ahad ,LO = (694.8 8.6exp) ∙ 10-10 ahad Determination of s(e+ e- p+ p-) by using the emission of photons in the initial state (Initial State Radiation ISR) e+ e- p+ p- g Radiative return to the resonances r, w (an alternative to the energy scan) J. H. Kühn et al. 2 Conventionally s(e+ e- hadrons,Qhadr ) is measured as a function of energy making an ‘energy scan’ at DAFNE not foreseen for the foreseeable future, DAFNE has been designed for high luminosity at the f resonance alternative approach (‘radiative return’): Run at fixed energy s mf and exploit the process e+ e- hadrons + g with the g emitted in the initial state (ISR) to reduce centre of mass energies of the colliding e+ e- and consequently the energy of the hadronic final state (here two pions) 2 2 2 2mp Mpp mf 2 2 Q2 Mpp mf 2mfEg Radiative return (Initial State Radiation) g es = m2 f g * e+ DAFNE : radiative return to r, w : (w) g p+ p- g J p=1- p- _ qq (r, w) e+ e- g* _ p+s' = 2 M pp g qq gr Radiative return The ISR-method (‚radiative return’) needs precise calculations of higher order radiative corrections (Monte Carlo generators EVA1, PHOKHARA2, KK MC3) Final State Radiation has to be taken into account1-4 1, 2 H. Czyż, J. H. Kühn, G. Rodrigo et al. 3 S. Jadach et al. 4 J. Gluza, F. Jegerlehner et al. But the radiative corrections and the absolute luminosity have to be known only for one fixed energy (1020 MeV) Hadronic cross section e+ e- p+ p- g Measurement: s(e+ e- p+ p- ng) Goal by applying PHOKHARA s(e+ e- p+ ,LO p) and ahad m First analysis: small photon angles 50 < qp < 130 qg < 15 ( > 165), Eg > 10 MeV detection of two charged pions no photon detection qg 2 dN / dQpp L = 140 pb-1 r, w high statistics high resolution 2 low M kinematically suppressed 2 Qpp (GeV2 ) + + Hadronic cross section e e p p g nb 2 Qpp (GeV2 ) Total experimental and theoretical error : 1.3 % experimental systematic error: theoretical error: 1.0 % 0.8 % Bare cross section (measured cross section corrected for vacuum polarisation) The cross section to be inserted in the dispersion integral has to be the bare cross section 1.08 g ee+ g * e+ p _ g qq * + d(s) 1.06 1.04 e- p Vacuum polarisation - 1.02 1 0.2 0.4 0.6 0.8 1.0 2 2 Mpp(GeV ) 2 ao d( s) ao2 s bare( s) s ( s) a2 ( s) 1 Da ( s) Da ( s) lep had d(s) from F. Jegerlehner Hadronic cross section e+ e- p+ p- Integrating the bare cross section in the region 0.35 GeV2 < KLOE: 22 < 0.95 GeV Qpp pp - 0.95 GeV2) = (389.2 0.8stat 3.9syst ± 3.1theor) 10-10 a(0.35 m Comparison with CMD-2 in the energy interval 0.37 < KLOE: pp (0.37 - 0.93) = (376.5 0.8stat 4.8syst+theor) 10-10 am CMD-2: (0.37- 0.93) = (378.6 2.7stat 2.3syst+theor) 10-10 app m 2 GeV2 <Q0.93 pp (± 4.9) (± 3.6) KLOE confirms discrepancy of 10 % between e+ e- and data in the region above r-peak Origin: different masses and widths of charged and neutral r mesons, not observed so far ? S. Ghozzi and F. Jegerlehner, Phys. Lett. B 583 (2004) 222 M. Davier, hep-ex/0312064 FSR corrections For the evaluation of the dispersion integral for ahad one needs s(e+e- p+ p-) m including FSR e+ e- p+ p- gFSR (ISR+ FSR) g _ qq p + p - B field g g * m+ g g q * g q hadrons m+ g Treatment of FSR corrections (2 complementary approaches using PHOKHARA) approach 1: ‘FSR excluding’ N(e+e- p+ p- gISR gFSR) subtract FSR contribution approach 2: ‘FSR left included’ N(e+e- p+ p- gISR gFSR ) event analysis PHOKHARA: ISR event analysis PHOKHARA: ISR+FSR luminosity luminosity s(e+e- p+ p- gISR) s(e+e- p+ p- gISR gFSR ) radiator H radiator H s(e+e- p+ p-gFS ) R ‘added by hand’ 0.8 …0.9% (Schwinger 1990) s(e+e- p+ p- gFSR ) How well do these two approaches agree? Treatment of FSR corrections Comparison of the two approaches, differ by < 0.2% line = approach 1 + = approach 2 scalar QED is assumed in PHOKHARA to simulate FSR processes charge asymmetries test scalar QED ratio = approach 1 / approach 2 2 M (GeV2 ) 2 M (GeV2 ) + + Hadronic cross section e e p p g Charge asymmetries due to FSR-ISR interference, test of FSR models (e. g. scalar QED = pointlike pions) Second analysis: large photon angles qg detection of two charged pions detection of one photon 0.9 – 1.0 GeV2 A( qp) 50 < qp < 130 50 < qg < 130, Eg > 10 MeV Nip ( qp) Nip ( qp) Nip ( qp) Nip ( qp) MC (ppg+mmg+ppp) data 0.8 – 0.9 GeV2 d(MC-data) < 13% qp MC (ppg+mmg+ppp) MC (ppg only) data low M 2 populated Summary Kaon physics: BR(KS) at the 10-7 level (KS p p p) semileptonic K3 decay modes (KS,L , K±) under investigation (1 % level) Hadronic physics: hadronic cross section s(e+e- p+ p-) determined by radiative return with 1.3exp.+theo % confirms difference between data and SM for am (so far small photon angle analysis covering M 2 > 0.37 GeV2) Radiative return at large photon angles, work in progress: Contribution of am in the energy interval M 2 < 0.37 GeV2 4. DAFNE-2 DAFNE-2 at the horizon ? energy up to 2 GeV luminosity up to 5 ∙ 1034 cm-2 s-1 = 50 nb-1 s-1 = 50 000 mb-1 s-1 corresponding to 5 1011 KS (KL) / year (1 ‚technical year = 107 s) lower machine background rich physics program for KLOE (original proposal and present program continueing) KS po p p, first evidence CP for in KS decays, BR ~ 2 10-9 semileptonic decays KS p± e n |Vus| interference patterns to determine hi = A(KL i) / A(KS i), e d, m d, phases to study CP and CPT K± p p+ p- and K± p± p p, slopes and asymme Alghero Workshop on e+ e- in the 1 - 2 GeV range, 2003, Sept. 10-13 5. Conclusion first successful production runs for DEAR, FINUDA 500 pb-1 for KLOE in 2001-2003 many KLOE results already better than current PDG numbers in spite of a luminosity, by almost an order of magnitude lower than originally specified hadronic vacuum polarisation in agreement with CMD-2 results DAFNE on the track to the fb-1 era in 2004 DAFNE-2 at the horizon (energy up to 2 GeV, luminosity up to 5 ∙ 1034 cm-2 s-1, lower machine background) ? KS p e n x c / a p e n H weak K o p e n H weak K o x 12 ( x x) with 2x DS = DQ rule (SM: |x+| ~ 10-6) x c * d * c * a b a (CPTassumed) and x c* d * c* a b a G S( p-e n) G S( p+e n) G L ( p-e n) G L ( p+e n) - + - + G S( p e n) G S( p e n) G L ( p e n) G L ( p e n) KLOE (170 pb-1 of 2002) Re x+ = (3.3 ± 5.2stat ± 3.5syst) ∙ 10-3 CP LEAR 1998 Re x+ = (-1.8 ± 4.1stat ± 4.5syst) ∙ 10-3 (CPassumed) CPLEAR CP LEAR 1998 KLOE DS DQ (2nd order weak interaction) · d S=1 Q=0 Ko W s u + W S=1 Q=0 d K o s A( K o p e n) A( K o p e n) 7 10 7 - · n - W p d u · · u S=0 Q=1 n W u + p d S=0 Q=1 calculated with cPT, M. Luke, Phys. Lett. B 256 (1991) 265 KS p± e n Comparison of Brookhaven () and KLOE () o of Vus fK p (0) with PDG 2002: K o p Vus f (0) PDG 2002 data G(K+ po e+ n) G(KL p- e+ n) G(K+ po m+ n) G(KL p- m+ n) Ke3 Keo3 K m3 K om3 KS p± e n: Vus E 865 KLOE PDG 2002 Ke3 cPT calculation up to p4 Keo3 H. Leutwyler, M. Roos, Z. Phys. C 25 (1984) 91 confirmed by lattice calculation cPT up to p6: G. Isidori et al., hep-ph/0403217 o Cirigliano et.al. hep-ph/0401173 Vus fK p (0) = 0.961 ± 0.008 Vus fK Final analysis being ahead o p (0) = 0.981 ± 0.010 p G(KL g g) / p), KL lifetime G(KL p dominated by long-distance contributions (p, h, h) cPT calculation sensitive to qP dominates long distance contribution to KL m+ m- KL g g KL po po po 362 pb-1 KLOE: L = 51.6 ± 0.4 ns PDG: L = 51.7± 0.4 ns KLOE 2003: ratio = (2.79 ± 0.02 ± 0.02)10-3 Phys. Lett. B 566 (2003) 61 NA48 2002: (2.81 ± 0.01 ± 0.02)10-3 PDG 2003: (2.81 ± 0.02)10-3 Measurement of KS mass f peak scan (e+e- KS KL ) (mb) f KS KL K S p + p- KLOE: m(KS) = 497.583 0.005 0.020 MeV W2 m ( K S) ( p p )2 4 2 s (MeV) CMD-2 W (MeV) momentum scale calibrated with CMD-2 2001: m(f) = 1019.483 0.011 0.025 MeV NA48 KLOE KL charged particles BR KL p+ p KL pp m n KL p e n KL p+ p- KLOE PDG 2003 0.132 0.002 0.1257 0.0019 0.271 0.002 0.2717 0.0025 0.384 0.002 0.3878 0.0027 (2.04 0.04) ∙ 10-3 (2.081 0.026) ∙10-3 78 pb-1 2002 data KL p KL p+ p- K L p+ p- p m n KL p en Theory: H. Czyż, J. H. Kühn, G. Rodrigo et al. EVA tree level ISR LO FSR interference PHOKHARA 1 ISR NLO PHOKHARA 2 ISR NLO LO FSR (EVA) PHOKHARA 3 ISR NLO (FSR + ISR) LO FSR FSR: scalar QED, pointlike pions PHOKHARA with 2 photons no distinction between ISR+ISR or ISR+FSR photons LO FSR (no ISR): e+ and e- collide with mf 2 the virtual g* has Q2 =mf leading order (LO ISR) g g * _ qq p g * + _ qq p + g p p + virtual corrections - - NLO (ISR+FSR): simultaneous initial state and final state photons next to leading order (NLO) g g g * _ qq p + p - g * _ qq p + p - g + virtual corrections Experimental systematic errors efficiencies trigger: tracking: vertex: likelihood: trackmass mtrack: acceptance: background: unfolding: 0.6 % 0.3 % 0.3 % 0.1 % 0.2 % 0.3 % 0.5 % 0.3 % total: 1.0 % Theoretical errors radiator function H: vacuum polarization: Luminosity: FSR: 0.5 % 0.2 % 0.5 % 0.3 % total: 0.8 % error of FSR: d(proposal 1-2): d(MC-data) < 20 % of a total contribution of FSR of < 1% 0.2 % total: 0.3 % Total experimental and theoretical error : 1.3 % 0.2 % FSR corrections NLO (ISR+FSR) FSR / ISR LO - FSR (no ISR) LO FSR is a background to be subtracted, it is lower < 1 % due to our acceptance cuts % before trackmass cut FSR / (FSR+ISR) after trackmass cut 2 Mpp (GeV2 ) 2 Mpp (GeV2 ) trackmass cut very efficient in cutting FSR: 2 = 0.35 GeV2 before the cut there are up to 4 % at Qpp FSR enhanced due to two-step process: e+ e- r g (p+ p- g) g e+ e- data versus -decays (after correction of CMD-2 in Aug. 2003) | F | 2e e | F | 2 | F | 2 s ( GeV2) above the r-peak -data are systematically higher by 10% sbare(KLOE-CMD2) / KLOE s (GeV2) Total efficiency in % ,LO ahad m 80 60 2 Mpp (GeV2 ) The future ? final goal is the experimental determination of s(e+ e- p+ p-) with an error of 0.3…0.5 %, in order to determine to better than 3.5 ∙ 10-10 (0.5 %) ahadr m KLOE group collaborates with several theoretical groups Institut für Theoretische Teilchenphysik, Universität Karlsruhe (J. H. Kühn, G. Rodrigo et al.) Institute of Physics, University of Silesia, Katowice (H. Czyż et al.) DESY Zeuthen (F. Jegerlehner et al.) Henryk Niewodniczanski Institute of Nuclear Physics, Cracow (S. Jadach) 12C K stop 12 L C p preliminary excited state @ 261 MeV/c ground state @ 275 MeV/c pp [ GeV/c]