Transcript HEP-2005
Hadronic Substructure & Dalitz Analyses at CLEO Mats Selen, University of Illinois HEP 2005, July 22, Lisboa, Portugal M. Selen, HEP-05 1 Outline Why the interest in charm Dalitz Plot (DP) analyses? Results from CLEO 0 + - 0 D → K K p D0 p+p-p0 D0 Ksp0p0 What CLEO-c will do for CKM angle g/f3. M. Selen, HEP-05 2 CLEO Evolution CLEO II.V (9/fb) New RICH New Drift Chamber New silicon New Trigger & DAQ CLEO III (14/fb) Replace silicon with a wire vertex chamber CLEO-c (281/pb) M. Selen, HEP-05 3 Why bother? Need to understand the brown muck. Final state interactions are tricky Relative amplitudes and phases hard to calculate – must measure. Need to sort out the best way to model ≥ 3 body decays Isobar, K-matrix, … People have not always agreed on best approach Important engineering measurement for getting the most out of b-factory data. For example, extracting f3 from BDK M. Selen, HEP-05 4 The power of the DP approach Interference is a beautiful thing ! Phase sensitivity is a very important handle Example: D0 K- p+ p0 M. Selen, HEP-05 5 79% r(770) a1 eif1 + a2 3.3% K*(1430)- + a5 13% K*(892)0 eif2 1.3% K*(1680)- eif5 + a6 eif6 16% K*(892)- + a3 eif3 + a4 5.7% r(1700) + a7 4.1% K*(1430)0 eif4 7.5% non-res eif7 + a8 eif8 = M. Selen, HEP-05 6 Relevance to f3 There are several schemes to access g/f3 by exploiting interference in the decays of charged B mesons to charm: B DK D K*K Grossman, Ligeti, Soffer PRD 67 (2003) Suprun, Rosner PRD 68 (2003) 0 + - 0 CLEO analysis of D K K p D 3-body/Dalitz Giri, Grossman, Soffer, Zupan PRD 68 (2003) 0 + + - 0 CLEO analysis of D KSp p , p p p M. Selen, HEP-05 7 0 + 0 D K K p Method for measuring CKM phase f3 by looking at B± → (K*+ K-)DK ± and B± → (K*- K+)DK ± Needs a measurement of the strong phase difference dD between D0 → K*+ K– and D0 → K*– K+. Dalitz analysis of D0 → K+K-p0 will yield dD d=0 M. Selen, HEP-05 d=180 8 0 + 0 D K K p D*+ → p+ D0 CLEO III (4S) Region: 8.965/fb K+ K– p0 K Km p0 signal region (after selection criteria) Signal Fraction 77.4% Signal Events 565 (in the signal region) mK+p02 (GeV/c2)2 gg f K*+ K*- mK+K-p0 (GeV/c2) M. Selen, HEP-05 mK-p02 (GeV/c2)2 9 0 + 0 D K K p Preliminary Fit Statistical errors only Resonance amplitude a phase q K*(892)+ Fixed to 1 Fixed to 0 K*(892)- 0.4951 0.0530 331.48 10.35 f (1020) 0.4911 0.0487 99.55 12.94 nonresonant 5.6660 0.4035 225.40 6.67 Fit Fractions Resonance Fit Fraction K*(892)+ 45.20% 2.97% K*(892)- 11.01% 2.25% f (1020) 8.57% 1.56% nonresonant 35.91% 3.46% 100.69% 5.32% M. Selen, HEP-05 10 Fit projections reveal a feature/problem… K*+ mK+p02 (GeV/c2)2 K*- mK-p02 (GeV/c2)2 dips are we missing some physics ?? Exploring K-p P-wave K-matrix approach M. Selen, HEP-05 11 f3 from 3-body final states Access f3 via interference between B± D0K± and B± D0K± s u c b favored u - - u B D K ~V V B± u c b 0 ~ D * us cb KS, p0 p+ pK± M. Selen, HEP-05 suppressed u - 0 s u B D K - ~ VcsVub* 0 ~ i d -3 0 D- D + re D 0 ~ D+ D + rei d +3 D 0 12 Amplitude differences will be sensitive to f3. ~ i d 3 Amp( D ) f m , mm + re f mm , m Where f x, y is the amplitude of the D0 matrix element at the point x, y on the Dalitz Plot, and m m 2 K Sp Once f x, y has been determined (where we come in) then ~ ~ D+ and D- Dalitz plots can be fit to determine f3. ~ D- ~ D+ ~ D KSp-p+ BELLE m253/fb m- (From B± decays) M. Selen, HEP-05 m+ m+ 13 0 + 0 D p p p Useful for studying f3 in charged B decays. 0 - + Like D KSp p (discussed later) Good system for CP violation search. Some predictions as high as 0.1% (ref) Compare to D+p+p-p+ Has large S-wave component (FOCUS ref) M. Selen, HEP-05 14 S/(S+B) ~ 80% S ~ 1100 9.0/fb m2(p+p0) (GeV2) D0p+p-p0 m2(p+p-) (GeV2) 0 1 2 m2(p+p-) (GeV2) M. Selen, HEP-05 3 0 1 m2(p+p0) 2 (GeV2) 3 0 1 m2(p-p0) 2 (GeV2) 3 15 Amplitude Phase(o) Fit Fraction % r+p- 1 (fixed) 0 (fixed) 76.5±1.8±2.5 r0p0 0.56±0.02±0.03 10±3±2 23.9±1.8±2.1 r-p+ 0.65±0.03±0.02 176±3±2 32.3±2.1±1.3 NR 1.03±0.17±0.12 77±8±5 2.7±0.9±0.2 p+p- proj < 6.4 @ 95% CL 0 Amplitude Phase(o) Fit Fraction % r+p- 1 (fixed) 0 (fixed) 78.0±2.1 r0p0 0.56±0.02 9±3 24.4±1.9 r-p+ 0.66±0.03 176±3 33.9±2.3 s(500) 0.22±0.06 355±24 0.08±0.08 1 2 3 GeV2 < 0.21 @ 95% CL Amplitude Phase(o) Fit Fraction % r+p- 1 (fixed) 0 (fixed) 76.3±1.9±2.5 r0p0 0.57±0.03±0.03 10±3±2 24.4±2.0±2.1 r-p+ 0.67±0.03±0.02 178±3±2 34.5±2.4±1.3 K-matrix 0.70±0.20±0.12 2±14±5 0.9±0.7±0.2 See Au, Morgan, Pennington PRD 35, 1633 (1987) M. Selen, HEP-05 0 1 2 3 GeV2 0 1 2 3 GeV216 < 1.9 @ 95% CL D0p+p-p0 Only rp contributions plus small non-resonant component are required to fit Dalitz plot. Very small D0p+p-p0 S-wave fit fraction (<0.9%) compared to FOCUS (56%) for D+p+p-p+ + + - + 0 + - 0 D p p p / D p p p S-wave ratio > 36@95%CL Tree level estimate = 3 2 2 18 Flavor tagged D0 and D0 Dalitz plots also fit separately to limit DP integrated CP asymmetry: +0.09 ACP = 0.01- 0.07 0.05 M. Selen, HEP-05 17 D0 Ksp0p0 • Lots of brown muck • Complement KSp-p+ analyses • Good place to search for low mass pp • No r p0p0 to get in the way! K*(890) + K0(1430) + f0 + NR 0 1 m2(p0p0) (GeV2) M. Selen, HEP-05 2 m2(p0p0) (GeV2) S/(S+B) ~ 70% S ~ 700 K*(890) + K0(1430) + f0 + NR + s 0 1 m2(p0p0) (GeV2) m2(KSp0)RS (GeV2) 2 18 CLEO-II.V & III (~15 fb-1) S/(S+B) ~ 72% S ~ 1500 m2(p0p0) (GeV2) S/(S+B) ~ 70% S ~ 700 CLEO-c data (165 pb-1) m2(KSp0)RS (GeV2) M. Selen, HEP-05 19 What CLEO-c will do for f3 ~ i d 3 Amp( D ) f m , mm + re f mm , m The determination of f x, y is presently the limiting systematic Belle and BaBar have studied the dependence of f3 on the D decay model (analysis used D0 Ksp+p-) Belle - Phys.Rev.D70:072003,2004 hep-ex/0406067 o +17 f3 77 -19 13 11 BaBar – ICHEP04 paper hep-ex/0408088 g 70 26 10 10 o M. Selen, HEP-05 D Decay Model Systematic Uncertainty 20 CLEO-II.V Fit Fraction (%) (stat err shown) K*892+p- 0.34 ± 0.13 K*892-p+ 65.7 ± 1.3 K0r0 26.4 ± 0.9 K0 w 0.72 ± 0.18 K0f0980 4.3 ± 0.5 K0f21270 0.27 ± 0.15 K0f01370 9.9 ± 1.1 K0*1430-p+ 7.3 ± 0.7 K2*1430-p+ 1.1 ± 0.2 K*1680-p+ 2.2 ± 0.4 NR 0.9 ± 0.4 S/(S+B) ~ 98% S ~ 5300 m2(p-p+) (GeV2) D0 Ksp+p- 2 M. Selen, HEP-05 1 0 0 Rather low statistics compared to… 0 1 1 2 3 2 m2(KSp)RS (GeV2) m2(KSp+) (GeV2) 30 1 2 m2(p-p+) (GeV2) 30 1 2 3 m2(KSp-) (GeV2) 21 2.27x108 BB pairs BaBar data with “CLEO” model not so good BELLE fits look like BaBar M. Selen, HEP-05 22 Fit with additional resonances much better. This includes BW s1 and s2 with ~10% fit fractions. Causes big systematic uncertainty ! M. Selen, HEP-05 23 CLEO-c can help Do simultaneous CP tagged and flavor tagged analysis of D0 Ksp+p- [only at ’’(3770)] Suppose we write f m+ , m- f m+ , m- eif m+ ,m- We will extract cos m+ , m- - m- , m+ as well as f m+ , m- in a model independent way. This is exactly what the f3 analyses need. M. Selen, HEP-05 24 Many other CLEO-c Dalitz plot analyses are in the works: K-p+p0 K SK + K - K-p+h KSKp p-p+p0 p+p+p- KSKSp0 KSp+p0 etc…many others M. Selen, HEP-05 25 Conclusions CLEO has done (and continues to do) groundbreaking work on charm Dalitz analyses. K-p+p0,p+p-p0,KSp+p-,KShp0,K-K+p0,KSp0p0, ... Implementation of K-Matrix amplitudes in fits CLEO-c will open a new window on the charm sector by exploiting quantum correlations: CP tagged Dalitz Plot analyses f3, mixing, CP violation, … Double correlated Dalitz analyses (i.e. DP vs DP) Stay tuned M. Selen, HEP-05 26