CKM phase and CP Violation in B Decays

Download Report

Transcript CKM phase and CP Violation in B Decays

CKM phase and CP
Violation in B Decays
David Brown
Lawrence Berkeley National Lab
BaBar Collaboration
August 14, 2007 Daegu, Korea
Talk Outline







Review of CPV in the B system
Results on the CKM unitarity angle =1
Results on the CKM unitarity angle =2
Results on the CKM unitarity angle =3
Results on the Bs phase angle s
Results on Direct CPV
Conclusions
I will concentrate on (some) New Results
2
D. Brown, CKM phase and CP Violation in B Decays
Quark-Sector Flavor in the SM

3 known generations of quark doublets

(u,d) (c,s) (t,b), EM charge (2/3, -1/3)
 Origin of families unknown in SM


Only the charged-current EW interaction
can change flavor in the SM
EW eigenstates aren’t mass eigenstates

Only SM connection between generations!
VCKM
3
D. Brown, CKM phase and CP Violation in B Decays
The CKM matrix

Relates EW flavor and quark mass eigenstates


3 generations, Unitarity  3 rotations, 1 phase


No prediction of values within SM
Non-zero phase implies CPV in flavor transitions
New Physics (NP) with non-SM flavor couplings
would make the CKM description incomplete

Eg: 4th generation, SUSY, …
Wolfenstein parameterization
Vud
Vus
Vub
VCKM = Vcd
Vcs
Vcb
Vtd
Vts
Vtb
4
=
1-2

A 3(-i)
-
1- 2/2
A 2
A3(1- -i) -A 2
≈0.23, A≈0.8,
1
≈0.2, ≈0.4
D. Brown, CKM phase and CP Violation in B Decays
+ O(4)
The Unitarity Triangle(s)

Graphical expression of unitarity condition(s)


1 triangle has roughly equal-length sides
CKM Unitarity violation would imply New Physics

Test SM + CKM by over-constraining angles and sides

(  )



 VtdVtb* 
  2  arg
* 
V
V
 ud ub 
-i
(00) 
Vud Vub* 
  3  arg
* 
5
Vud Vub*
  i  
VcdVcb*
 VcdVcb 

   i  O(2 )
 VcdVcb* 
  1  arg
* 

V
V
 td tb 
(10)

D. Brown, CKM phase and CP Violation in B Decays

Consequences of CPV

CPV can occur when multiple BF amplitudes interfere


CPV in decay (direct CPV)
CPV in mixing (original CPV seen in KS, KL)



Very small for B system (exp. limit <10-2, predicted ~10-3 in SM)
CPV in mixing + decay (indirect CPV)
B system uniquely situated for CPV studies

Mixing, long lifetime, large production X-section, rich decay set,
heavy quarkstheoretically accessible, …
B0 and B
Direct CPV



EW1
S1
EW2
S2
CP † S1†
EW1


6
†≠
Mixing+Decay CPV

B
ABf CP
0
e-2i
0
AF
S2†
EW2†

D. Brown, CKM phase and CP Violation in B Decays
0
FCP
AF
Detecting Indirect CPV in B-decays
N(B 0 (t)  fCP )  N(B 0 (t)  fCP )
ACP (t) 
N(B 0 (t)  fCP )  N(B 0 (t)  fCP )
 S f sin(m  t)  C f cos(m  t)
A f 2i S  2( f )
f
f  e
2
1  f
Af
Coherent
evolution
B-factories

e-
e+
(4S)

B0(b) K-
1  f
2
Flavor tagging
Q≈30% at B-factories
≈few % at Tevatron
e
m+
z≈ct
7
Cf 
1  f
2
m-
p+
p-
D. Brown, CKM phase and CP Violation in B Decays
BfCP exclusive
reconstruction
~10%
The B-factories

Asymmetric e+e- colliders make boosted (4S)


General-purpose detectors




Tracking EM calorimetery, muon system, PID,…
BaBar/PEP-II Total Sample ≈ 450 fb-1
KEK-B/Belle Total Sample ≈ 700 fb-1
Data sets have increased ~10% in the last year


cB~200 mm in the lab frame
Many new results from data ‘backlog’!
Tevatron Run2 results on ≥1fb-1 coming out now
8
D. Brown, CKM phase and CP Violation in B Decays
Beta
B0
B0

(  )


(00)
9
 VcdVcb* 
  1  arg
* 
 VtdVtb 

(10)
D. Brown, CKM phase and CP Violation in B Decays


B0  charmonium K0: bccs

i f 2 
gold  e
J /, ',  c ,c
f= CP eigenvalue
K S ,K L



SM decay dominated by a single tree diagram


asymmetry directly measures 
Higher-order diagrams are smaller by factor ~O(10-210-3)


No EW phase
Leadingorder (Tree) diagram has no weak phase


= -1(KS),+1(KL)
most have same EW phase
BF ≈10-3 (color suppressed)
SM expectation: S = -f sin2 C≈0
10
D. Brown, CKM phase and CP Violation in B Decays
B0  charmonium K0: bccs

J /K
NBB = 535M
Nsig = 7484±87
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
background
PRL 98, 031802 (2007)
0
L
NBB = 383M
Nsig = 4748
Purity=55%

hep-ex/0703021
MB (GeV/c2)

Easily reconstructed final states
 Charmonium l+l- has high efficiency, low background


QuickTime™ and a
background
TIFF (LZW) decompressor
are needed to see this picture.
KSp+p- easily recognized in tracking detectors
Strong kinematic variables separate B from background

MB constrained to known beam energies to improve resolution
 EEB-Ebeam is an independent kinematic variable
11
D. Brown, CKM phase and CP Violation in B Decays

sin2 in B0 → charmonium K0 : bccs
J/KS
NBB = 383M
NBB = 535M
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
B0 tags
B0
tags
J/KL
background
PRL 98, 031802 (2007)
BaBar Preliminary (hep-ex/0703021)
t (ps)
S  0.714 0.032 0.018
ft (ps)
S  0.642  0.031  0.017
C  0.049 0.022 0.017
C  0.018  0.021  0.014
12
D. Brown, CKM phase and CP Violation in B Decays
 from B0 → charmonium K0 : bccs
Sf = sin2
95%CL contours
Sin2=0.678±0.026
New world average
Sets the gold
standard for CPV
measurements
13
2-fold ambiguity resolved by
several cos2  measurements
new

B0 → D03-bodyh0 Dalitz Analysis (BaBar)
B0 → KSp+p- Dalitz Analysis (BaBar)
B0 → KSK+K- Dalitz Analysis (BaBar)
+ older results on B0 → J/K*, …
D. Brown, CKM phase and CP Violation in B Decays
B0 → D+D- : b → ccd

D-
NP particle
can enter
in loop
D-


Two decay amplitudes interfere



D+
Standard Model predicts:
b → c tree diagram with S = -sin2
b → d penguin diagram with S ~ 0
Penguin is expected to be small


D+
B0
  B0
~2-10% (PRD 61, 014010, 2001)
Larger backgrounds
Y. Grossman and M. Worah, Phys. Lett. B 395, 241 (1997)
14
D. Brown, CKM phase and CP Violation in B Decays
S   sin 2 
C ~ 10%

S and C in B0 → D+D- : b → ccd
C
B0 tags
(0,0)
NBB = 383M
Nsig =131±14
B0 tags
NBB = 535M
Nsig =128±14
background
Belle claims
evidence for
direct CP
violation at
3.2 s
S
CCP(B0D+D-) = -0.91 ± 023 ± 0.06
CCP(B0D+D-) = +0.11± 022 ± 0.07
hep-ex/0702031
PRL 98,221802(2007)
Agreement on C has CL=0.003
⇒ >3.0σ discrepancy
15
New Belle Result:
ACP(B+D+D0) = 0.01 ± 0.08 ± 0.02
BELLE-CONF-0762 Preliminary
D. Brown, CKM phase and CP Violation in B Decays
CPV in B0 → D*+D*- : b → ccd


Same diagram as B0 → D+D-,but Vector-Vector final state

f (CP) depends on helicity, analyzed using D* decay angles
BaBar
preliminary
NBB = 383M
Nsig =617±33
background
hep-ex/0708.1549
R  0.143  0.034  0.008
S  0.66  0.19  0.04
C  0.02  0.11  0.02
16
D. Brown, CKM phase and CP Violation in B Decays
S and C in b → ccd

-Sf
Cf
sin2
Silver modes: generally
good agreement with golden
mode S= -sin2 C=0
17
D. Brown, CKM phase and CP Violation in B Decays

Purely Penguin decays: bsqq
SM
New Physics
s

q
q

New Physics can enter at equal order as SM
Comparison with charmonium sin2 provides a direct test for NP
Many accessible modes


SUSY,…

q
q
SM predicts same EW phase as b → cW

s
No tree-level contributions



NP might couple to some or all
More challenging experimentally

BF ~10-5, large backgrounds from continuum
18
D. Brown, CKM phase and CP Violation in B Decays
B0 → KSp0p0 :bsqq

LR>0.9
(Spherical)
LR>0.9
(Jet-like)
Nsig = 307±32
LR
LR>0.9,
good tag
B0
tags
B0 tags
MB(GeV/c2)
NBB = 657M
E(GeV)
Preliminary
S =+0.43 ± 0.49 ± 0.09
C=+0.17 ± 0.24 ± 0.06
BELLE-CONF-0723
2.0 s from the SM
expectation S= -sin2
t (ps)
19
t (ps)
D. Brown, CKM phase and CP Violation in B Decays
B0 → KSp+p- :bsqq


Measure TDCPA at each point on the Dalitz plot

Include interference between p+p-, KSp± resonances



0, f0,K*, …
Supersedes previous results on B0 → KS0 ,KSf0
+ Direct CPV in B0 → K*+p relative phases
2
2
B0 → KSf0(980)
B0 → KS0(770)
2eff
hep-ex/????
2eff
22.0
B 0  K S f 0 (980) : 2 eff  88.620.2
 5.1 7.8
2.1s > 2 from charmonium
0
0
19.2
B  K S  (770) : 2 eff  37.4 17.4  5.3  5.9
2-fold  ambiguity
0
B  K * (892)p : ACP  0.18  0.1 0.03  0.03
(partially) resolved
20
D. Brown, CKM phase and CP Violation in B Decays
sin2 in bsqq Penguins

Sf= -sin2eff
sin2



sin 2 eff  0.67  0.04


1% CL for the average


New naïve HFAG
average <1s from the
naïve golden mode
sin2 value










21
 New/Updated
BaBar/Belle Result
D. Brown, CKM phase and CP Violation in B Decays
Alpha


 VtdVtb* 
  2  arg
* 
 Vud Vub 


(  )




(00)

22
In principle measurable using
any bu dominated B0fCP
(10) 

Very rare decays! BF~10-6
In practice, penguin modes have
similar magnitude, different EW
phase  extracting  is a
challenge!
D. Brown, CKM phase and CP Violation in B Decays
B0 → p+p- : buud

B0 tags
B0
tags
B0 tags
B0 tags
NBB = 383M
Nsig = 1139±39
QuickTime™ and a
NBB = 535M
TIFF (LZW) decompressor
are needed to see this picture.
N = 1464±65
sig
PRL 98, 211801 (2007)
PRD 75 (2007) 012008
Spp  0.60 0.11 0.03 (5.2s )
Cpp  0.21 0.09 0.02 (2.2s )
Spp  0.61 0.10 0.04
Cpp  0.55 0.08 0.05 (5.5s )
2.1s tension in Cpp
23
D. Brown, CKM phase and CP Violation in B Decays
Extracting  from B0 → p+ p -




CPV well established
Problem: extract  from eff
Solution: Isospin

Measure isospin-related modes


Rates and C/ACP (if possible)
Adds another discrete ambiguity!
M. Gronau and D. London, Phys Rev. Lett. 65, 3381 (1990)
910°
BR(B0→ π0 π0) = (1.47 ± 0.25 ± 0.12)×10-6
C(B0 → π0 π0) = -0.49 ± 0.35 ± 0.05
BR(B± → π± π0) = (5.02 ± 0.46 ± 0.29)×10-6
hep-ex:0707.2798
A(B± → π± π0) = 0.03 ± 0.08 ± 0.01
24
D. Brown, CKM phase and CP Violation in B Decays
97 ± 11°
B0 → a1+p : buud


First TDCPV analysis of a1+p
Large signal observed

significant background
NBB = 383M
B0 tags
background
B0 → K1+p
B0
Nsig = 608 ± 53
tags
PRL. 97, 051802 (2006)
MB (GeV/c2)
PRL 98 181803
αeff = 78.6°±7.3°
NBB = 535M
Nsig = 654 ± 70

hep-ex/0706.3279
25
MB (GeV/c2)

use SU(3) to relate states
 BF B0 → K1+p
 BF and ACP in B0 → a1-
Next step: constrain 
D. Brown, CKM phase and CP Violation in B Decays
B0 → ()0 : buud


Vector+Vector final state


Analyze helicity to separate CP
admixture as in B0 → D*+D*-
Use Isospin triangle to
constrain  as in pp
TDCPV in 
NBB = 535M
NBB = 383M
Nsig=729 ± 60
hep-ex/0705.2157
t (ps)
PRD76, 011104(R) (2007)
C = 0.01 ± 0.15 ± 0.06
C  0.16 0.21 0.07
S = -0.17 ± 0.20
S  0.19 0.30 0.07
26
fL = 0.992
± 0.024 D. Brown, CKM phase and CP Violation in B Decays
t (ps)
The critical side: B0 → 00

NBB = 520M
NBB = 427M
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed
this±picture.
Nsigto see
= 85
27 ± 17
Nsig=34±16
Mpp GeV/c2
0..3
B 0  0  (0.9  0.40.4
) 106
 1.6 106 @90%CL
f L  0.6  0.2
Lsig/ Lsum
signal
BELLE-CONF-0747
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
hep-ex/0708.1630

B  (0.84  0.29  0.17) 106
f L  0.70  0.14  0.05
SL00  0.5  0.9  0.2
CL00  0.4  0.9  0.2
27
First TDCPV analysis of 00!
D. t
Brown,
(ps)CKM phase and CP Violation in B Decays
Preliminary
MB GeV/c2
Preliminary
BaBar
Preliminary

Constraining  using buud
B0 → ()0
BaBar
Preliminary
1 @68%CL
 WA  87.7  5.7
°
28
D. Brown, CKM phase and CP Violation in B Decays
Gamma
D0
B-
 Vud V 
  3  arg

 VcdV 
K-
*
ub
*
cb

B-

(  )


(00)

29
KD0
B+,B- rate asymmetry (DCPV) is
sensitive to  The problem: How to
distinguish EW phase from strong
phase?
(10)  Can also measure 2+ via

TDCPV in B0 D+p-,+
D. Brown, CKM phase and CP Violation in B Decays
 from B± D0K±


Three Answers

D0 decays to 2-body CP eigenstates (K+K-, p+p-,…) GLW


D0 decays to non-CP eigenstates (K+ p -, K+ p- p0,…) ADS




Better match in rates (Cabbio suppression enhances interference)
D0 decays to 3-body (K0Sp+p-) GGSZ


large + unknown asymmetry in B+,B- BFs
Uses (~known) variation of resonance strong phase across Dalitz plot
Requires detailed model of resonant substructure
All methods have (varying) weakness due to unknown or
under-constrained parameters
 Constrain  by combining results from all methods
GLW Gronau, London (1991),Gronau, Wyler (1990)
ADS  Atwood, Danietz, Soni (1997)
GGSZ Giri, Grossman, Soffer, Zupan (2003)
30
D. Brown, CKM phase and CP Violation in B Decays
Combined constraint on 

 = 88 ± 16 °
Includes a new
preliminary result:
B± D0K± GLW
(BaBar)
°
31
D. Brown, CKM phase and CP Violation in B Decays
The Unitarity Triangle: angles only
32
D. Brown, CKM phase and CP Violation in B Decays
The Unitarity Triangle: all constraints
A consistent picture across a huge array of measurements
33
D. Brown, CKM phase and CP Violation in B Decays
Bs J/ (s): bccs



Same quark decay as B0charmonium K0
Bs mixing goes as Vts ~ no CPV phase as in Bd mixing
Hep-ph/0612167
SM prediction of s = 4.2 ± 1.4X10-3
Simultaneous fit to s, s
s  0.70
0.47
0.39
Consistent with SM

34
D. Brown, CKM phase and CP Violation in B Decays
Direct CPV in charmless B Decays
K*0
3.8s
K+0
3.0s
Quic kTime™ and a
TIFF ( Unc ompres s ed) dec ompr es sor
are needed to s ee this pic tur e.
K+p~8s
K+
3.0s
Isospin analogs
AKp(B+K0p)=0.009 ± 0.025
AKp(B+K+p0)=0.050 ± 0.025

AKp(Bd)=−0.095 ± 0.012 (WA)
Effect from EW penguins?
35
D. Brown, CKM phase and CP Violation in B Decays
Direct CPV in Bs Decays
AKp(Bd)=-0.086 ± 0.023 ± 0.009
3.5s significance
AKp(Bs)=0.39 ± 0.15 ± 0.08
2.3s significance
Comparing AKp(Bd,
Bs)
Consistent with SM prediction ≈1.0
H.J.Lipkin, Phys. Lett. B 621, 126 (2005)
36
D. Brown, CKM phase and CP Violation in B Decays
Conclusions

Standard Model CKM CPV is well established


Unitarity angle precision continues to improve



Data constrain the unsolved problems of flavor/
generation mixing, matter-anti-matter asymmetry
The existing B-factories will soon be turned off



Sin2 is still statistics limited!
New, innovative techniques are still being developed
CPV provides a unique window on the SM


Confirmed by many analyses, several experiments
BaBar,Belle complete in ~2008,Tevatron in ~2009
Look for final analyses in 2009-2010!
Future flavor physics depends on future facilities

LHCB, super-B, super-Belle, …
37
D. Brown, CKM phase and CP Violation in B Decays
BACKUP
The B-factories
Belle
KEK-B
PEP-II
39
D. Brown, CKM phase and CP Violation in B Decays
Datasets
Pep-II
BaBar
40
Total ≈ 450 fb-1
KEK-B
BELLE
D. Brown, CKM phase and CP Violation in B Decays
Total = ≈ 700 fb-1
B0 → J/p0: b → ccd

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.


QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
NP particle
can enter
in loop
Enhanced sensitivity to higher-order (penguin) diagrams

Cross-check on assumption that Cgold≈0
M.Ciuchini,M.PieriniandL.Silvestrini,Phys.Rev.Lett95,221804(2005)
C
NBB = 535M
S=−0.65 ± 0.21± 0.05
C= -0.08 ± 0.16 ± 0.05
290 J/ψπ0 candidates
Purity=88±7%
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
Quic kTime™ and a
TIFF ( Unc ompres s ed) dec ompr es sor
are needed to s ee this pic ture.
(0,0)
hep-ex/0708.0304
(submitted to PRD.RC)
MB (GeV/c2)
41
D. Brown, CKM phase and CP Violation in B Decays
S
B0 → D*+- D-+ : b → ccd


Final state not a CP eigenstate




Could show time-integrated charge asymmetry
TDCPA modified by strong phase difference (S+- ≠ S-+, C+- ≠ C-+)
If penguin contribution is zero, C-+ = -C+- , eff=
If S-+= -S+- ,No CPV sin(2eff) = 0
42
D. Brown, CKM phase and CP Violation in B Decays

S and C in B0 → D*+- D-+ : b → ccd
B0→D*+DNBB = 383M
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
280 ± 19
signal events
B0→D*-D+
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
219 ± 18
signal events
Hep-ex/0705.1190
Time-integrated asymmetry
consistent with 0
sin(2) cosd  0 @ 4s
No significant direct CPV
43
D. Brown, CKM phase and CP Violation in B Decays
B0 → D03-bodyh0 : b → cud



D0→KSp+p- = coherent ensemble of quasi 2-body decays
(Known) variation of strong phase over Dalitz plot allows
extraction of strong and weak phase differences!


Must measure TDCPA at all points in the Dalitz plot
2-fold ambiguity on  can (in principle) be resolved
NBB = 383M
Nsig = 335 ± 32
BaBar Preliminary
(update)
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
hep-ex/????
44
D. Brown, CKM phase and CP Violation in B Decays
B0 → D03-bodyh0 Dalitz Analysis : b →
cud
BaBar Preliminary

B0 tagged
h0 = p0,('),
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
B0 tagged
K*+
0
K*-
Asymmetry
sin2  0.29 0.34
cos2  0.42 0.49
  1.01 0.08
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
cos2>0 at 84% CL
45

D. Brown, CKM phase and CP Violation in B Decays
B0 → KSK+K- :bsqq


Measure TDCPA at each point on the Dalitz plot

Includes interference between K+K-, KSK± resonances
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
hep-ex/0706.3885
ACP = −0.015 ± 0.077 ± 0.053
eff = 0.352 ± 0.076 ± 0.026 rad
46
D. Brown, CKM phase and CP Violation in B Decays
4.8s significance
B0 → D0CPh0 :b → cud

NBB = 383M
Nsig =335±32
background




b → cud tree dominates
b → ucd suppressed ~1/50
D0CP  D0 → KK, KS
 also D*0 → D0CPp0
h0  p0  
SM predicts S=-sin2, C≈0
hep-ex/0703019
S  0.56 0.23 0.05
C  0.23 0.16 0.04
First TDCPA in these modes!
47
D. Brown, CKM phase and CP Violation in B Decays
B0 → KSKS :bdss
EW decay phase
cancels mixing
K0 phase No CPV
Vtd expected!
B0
d
K0
R. Fleischer and S. Recksiegel, Eur.Phys.J.C38:251-259,2004
(0,0)
S = - 0.38
C = +0.38
BaBar result
PRL 97 (2006) 171805
S
48
B0
Nsignal=33±6
Raw Asymmetry
C
NBB = 657M
Entries/2.5ps

tags
B0 tags
background
BELLE-CONF-0723
0.77
0.38
0.08
0.05
SM expectation:S≈0,C≈0
A.K.Giri and R.Mohanta, JHEP,11,084(2004)
D. Brown, CKM phase and CP Violation in B Decays

Constraining  in B → a1p via SU(3)
No phase-space overlap between a1+, a1-, and a10
 Can use SU(3) to relate pK and a1K1A
 Necessary BFs are measured,  not yet computed
Gronau & Zupan, Phys. Rev. D73, 057502 (2006)
K1A  cosK1 (1400)  sin K1 (1270)

B0 → a1-
B0 → K1+p
BaBar Preliminary
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
MB GeV/c2
MKpp GeV/c2
BF(B0K1+(1270)p-) = 12.0 ± 3.1 +9.3-4.5 X10-6
BF(B0K1+(1400)p-) = 16.7 ± 2.6 +3.5-5.0 X10-6
49
BF(B0a1- K+)•BF(a1-p+p-p-) = 8.2 ± 1.5 ± 1.2 X10-6
Ach(B0a1- K+)= -0.16 ± 0.12 ± 0.01
BF(B+a1+ K0) •BF(a1+p+p+p-) =17.4± 2.5 ± 2.2 X10-6
Ach(B+a1+ K0) =0.12± 0.11 ± 0.02
D. Brown, CKM phase and CP Violation in B Decays
B0 → ppp0 (p)0 : buud


Can use Isospin as in p+p
New method: use (known) resonance phase variation
over Dalitz to analyze EW phase

Eliminates some ambiguities
Monte
Carlo
B0→ρ+ π-

‘pentagon’ relationship -> more terms to measure
Interference
Region.
ρ+
πρ-π+
Monte
Carlo
B0→ρ- π+
50
ρ0π0
D. Brown, CKM phase and CP Violation in B Decays
B0 → ppp0 (p)0 : buud

N(B0→π+ π- π0) =
2067 ± 86
Aρπ (ρ± π∓) =
-0.14 ± 0.05 ± 0.02
C (ρ± π∓) =
0.15 ± 0.09 ± 0.05
S (ρ± π∓) =
-0.03 ± 0.11 ± 0.04
ΔC (ρ± π∓) =
0.39 ± 0.09 ± 0.09
ΔS
(ρ±
π∓)
=
-0.01 ± 0.14 ± 0.06
C00 (ρ0 π0) =
-0.10 ± 0.40 ± 0.53
S00 (ρ0 π0) =
0.02 ± 0.22 ± 0.09
hep-ex/0703008
87°
74°
51
NBB = 383M
A 0p 0  0.45  0.35( stat)  0.32( syst )
S  0p 0  0.15  0.57( stat)  0.43( syst )
PRL 98, 221602 (2007)
TDPA + isospin
NBB = 449M
132°
D. Brown, CKM phase and CP Violation in B Decays
TDPA only

GLW results
A
CP 


(*) 0
(*) 
( B   DCP
)  ( B
K

(*) 0
(*) 
 DCP
)
K
(*) 0
(*) 
( B   DCP
)  ( B
K

(*) 0
(*) 
 DCP
)
K
R
CP 

(*) 0
(*) 
(*) 0
(*) 
( B   DCP
)  ( B   DCP
)
K
K
[( B   D (*)0 K (*) )  ( B   D (*)0 K (*) )] / 2
2
(*)
(*)
 1  r((*)
s ) B  2r( s ) B cosd ( s ) B cos
(*)
 2r((*)
s ) B sin d ( s ) B sin 
RCP 
4 observables, 3 unknowns
52
CP-even: DK+K−,p+p−
CP-odd: DKSp0, KS, KS
D. Brown, CKM phase and CP Violation in B Decays

ADS results
A
ADS

( B   D[ K p  ]K  )  ( B   D[ K p  ]K  )
( B   D[ K p  ]K  )  ( B   D[ K p  ]K  )
 2rB rD sin(d B  d D ) sin  / RADS
R
ADS

( B   D[ K p  ]K  )  ( B   D[ K p  ]K  )
( B   D[ K p  ]K  )  ( B   D[ K p  ]K  )
 rB2  rD2  2rB rD cos(d B  d D ) cos
2 observables, 5 unknowns
AADS =−0.22 ± 0.61 ± 0.17
53
D. Brown, CKM phase and CP Violation in B Decays

GGSZ Results
Physical Variables
rB , B ,
Modes in DKKp(*)K(*)
54
Gaussian Variables

x+ = rB cos( B+), y+ = rB sin( B+)
x− = rB cos( B−), y− = rB sin( B−)
Similar for Y+,YD. Brown, CKM phase and CP Violation in B Decays
CPV in (4S) Decay

If large, would invalidate sin2 from TDCPA results
Method: partial reconstruction
Full reconstruction
(4S)
B0
B0
NBB = 535M
m+ J/
mpp+- K
S
pp+- K
S
J/ c
Partial reconstruction
Nsig = -1.5
+3.6
-2.8
events
Br((4S)B0B0J/KS+J/(c)KS)  4x107(90%C.L.)
SM expectation: ~1.4x10-7
55
D. Brown, CKM phase and CP Violation in B Decays
arXiv:0707.4336 (submitted to PRL)

How this all started...
In the early universe, for every billion ordinary particles annihilating with antimatter,
one was left standing…
•CKM CPV is too small to account for observed matter/anti-matter asymmetry by a factor of ~10-20
•Due to ‘Heavy’ Higgs, 12 factors of lambda for simplest process resulting in matter/anti-matter asymmetry
56
D. Brown, CKM phase and CP Violation in B Decays
57
D. Brown, CKM phase and CP Violation in B Decays