Transcript Lecture 4
Modelling of the Spectroscopic and Magnetic Properties of Transition Metal Complexes Using DFT and Ligand Field Theory (LFDFT) Mihail Atanasov ACI,Univ.of Heidelberg, Germany Inst. of General and Inorg.Chem.Bulgarian Acad.of Sciences SCM, Vrije Universiteit,Theoretical Chemistry Amsterdam, 05. 10. 2006 What are coordination compounds? The LFDFT Electronic Structure Multidet. DFT Calculations: (CI - DFT) Ab-initio, Semi-empirical, DFT, etc. … eff ˆ Exps.: H e.g. LFT, AOM, HVVD, SpinHamiltonian, etc. Ligand Field Theory: ligand field orbitals 3d-M1 <3d|h|L> <3d1|h|3d2> 3d1´ ns, np L exchange: direct or indirect (via bridging ligands) <3d1´|h|3d2´> <3d|h|L> 3d2´ 3d-M2 Ligandfield states of a d2 ion in a cubic field 1 S 1 1 A1 A1 1 E 1 A1 1 G 3 A2 1 1 T2 1 T2 T1 3 1 P 1 T1 3 3 T1 T2 3 1 D 2 e E t2e T1 1 T2 1 A1 1 E 3 A2 3 F 1 T2 3 T2 3 3 T1 T1 Ion libre Champ faible 2 t2 Champ cristallin Champ fort Configurations The hole function Fermi hole Coulomb hole MultiDeterminant DFT Problem: The present functionals do’nt include Near-Degeneracy Correlation ! Solution: Multi-Determinantal DFT is needed Consider a simple example H2 Dissociation Energy Curve: an illustrative Example Dissociation curve of H2 using DFT Spin restricted Spin unrestricted Coulson-Fisher point Total Spin of unrestricted DFT wave function <S2>=S(S+1) Coulson-Fisher point Comparison with exact calculations Spin restricted Spin unrestricted Exact (Kolos-Wolniewicz) Multi-Determinant method for near-degeneragy correlation u 1sA 1sB 2 1S2 1sA 1sB g 1sA 1sB 2 1 S2 Non-Redundant Single Determinants u g 2g g u g u u2 1 g 1g 1u 1 u u2 1 g 2g 3 u Energies of the single determinants u2 g u 2g g u Secular equation E 2g K g u E + 0 g u 2 0 E E u - K E E ˆ + - E J E +g -u E av +g -u G g u av g u + + g u + + ˆ + + G av g u g u E av J g u K g u K g u E +g -u E +g u+ Multiplet energies E 2g E + - E + + g u g u E E 1 g 2g E 3 u E E E 1 g u2 g u E +g -u E +g u+ E u2 E 1 u 2E g u E g u Energies of the Multiplets 1 g 1 1 1 u g u 1 g u2 2g 3 u 1g 1u H2 Dissociation Energy Curve: • Conventional DFT gives a good description near the equilibrium geometry • Restricted DFT (same orbital for different spins) does not give the correct long range behaviour • The Multi-Determinant Method yields the correct behaviour at all distances • Allowing the spin and wave functions to have different spatial components (Unrestricted scheme) yields a Localised (BS) state and includes near-degeneracy correlation (correct asymptotic behaviour) LF-DFT Ligandfield calculation of MXn based on DFT Hamiltonian n n n ZM N Zl n 1 1 H i d i si 2 i 1 i 1 ri l rli i j 1rij i 1 n n 1 H H0 VLF d i j 1rij i 1 i si The following parameters are needed Ligandfield parameters: d VLF d ci ci iKS Electrostatic matrix elements: i d d d d f Racah parameters B,C Calculation of ligandfield and Racah’s parameters Step 1: optimise the geometry of the ground state using LDA Step 2: get SCF, spin-restricted, KS-orbitals for an averaged ligandfield dn configuration: e2n/5 t23n/5 10 Step 3: calculate the energies of all single determinants n using the frozen KS-orbitals obtained in step 2 Step 4: use the energies of all these microstates to fit the ligandfield and Racah’s parameters step ii) SYMMETRY T(D) SCF ITERATIONS 200 MIXING 0.20 END mv tape21 feo4_aoc.t21 RESTRICTED CHARGE -2 OCCUPATIONS A1 4 E 4 0.8 T1 6 T2 18 1.2 END fully occupied 1A1 -11.297 1% 4sFe 1T2 -10.762 4% yz,xz,xy 2T2 1.306 46% yz,xz,xy 1E 1.655 53% z2,x2-y2 2A1 2.400 2% 4s Fe 3T2 3.425 2% 4px,y,z 1T1 4.804 0% partly occupied: 2E 6.520 47%z2,x2-y2 4T2 7.941 47% yz,xz,xy empty: 3A1 8.344 99% 4s mv tape21 feo4_aoc.t21 to be used in step iii) Step iv) SYMMETRY NOSYM DEFINE xx=0.967 END ATOMS cartesian Fe 0 0 0 f=Av O xx xx xx f=Av O -xx -xx xx f=Av O xx -xx -xx f=Av O -xx xx -xx f=Av END FRAGMENTS Av /home/ata/Documents/mult/feo4_aoc.t21 END SLATERDETERMINANTS SD 1 A1 2 // 2 E:1 1 1 // 1 1 E:1 , E:2, T2:1, T2:2, T2:3 denote IRREPS for E:2 1 0 // 1 0 symmetry species spanned by the MO-orbitrals T1:1 1 // 1 of dz2, dx2-y2, dyz, dxz, dxy (Td-symmetry) T1:2 1 // 1 T1:3 1 // 1 Consult ADF manual for other symmetries, T2:1 3 0 // 3 0 including cases of lower symmetry or cases T2:2 3 0 // 3 0 without any symmetry. T2:3 3 0 // 3 0 SUBEND …. SD 45 …. E:1 1 0 // 1 0 E:2 1 0 // 1 0 T2:1 3 0 // 3 0 T2:2 3 0 // 3 0 T2:3 3 1 // 3 1 SUBEND END Using this input ADF generates the energies of all SD, in this case: 1 2 3 4 5 6 7 8 9 10 z2+z2- x2-y2+ x2-y2- yz+ yz- xz+ xz- xy+ xy-1.20944200 z2+ z2- 12B+3C -2.25626566 z2+ x2-y2+ 0// 0 -2.02183988 z2+ x2-y2- 4B+C -0.52452271 z2+ yz+ 9B+10Dq -0.35645889 z2+ yz- 10B+C+10Dq -0.52452269 z2+ xz+ 9B+10Dq -0.35645888 z2+ xz- 10B+C+10Dq -0.83723367 z2+ xy+ 10Dq// 1.419 -0.55996008 z2+ xy- 4B+C+10Dq ……………………………… 1.56350192 xz+ xz- 12B+3C+20Dq 0.66546225 xz+ xy+ 3B+20Dq 1.56350188 xy+ xy- 12B+3C+20Dq E(SD) = A.X ; X= (AT.A)-1.AT.E FeO42- o LFDFT 10Dq=11369 cm-1 * KS-DFT B=285 cm-1 C=1533 cm-1 d2 1A (1G,1S) 1 t22 e2 10B+5C 6(2B+C) 6(2B+C) 8B+4C 1T (1D,1G) 2 t22 B+2C 23B t2e 23B 2C 1E (1D,1G) t22 e2 B+2C -23B -23B 2C 3T (3F,3P) 1 t22 t2e -5B 6B 6B 4B t2e 1T1(1G) 4B+2C t2e 3T2(3F) -8B e2 3A2(3F) -8B 1) Multiplets of Transition-Metal Ions in Crystals, S.Sugano,Y.Tanabe, H.Kamimura, Acad.Press, NY, 1970 2) J.S.Griffith, The Theory of Transition-Metal Ions, Cambridge, At the University Press, 1971. LFDFT vs Difference Dedicated CI Approaches: FeO42LFDFT SORCI exp. T.Brunold El.trans. F.Neese 3A →1E 5197 8344 6215 2 3A →1A 2 1 9446 11799 9118 3A 3T → 2 2 11952 11366 12940 3A 3T → 2 1 14645 13507 17700 In the general case of a dn metal complex we get: B,C and the 5 „3d“ KS orbital energies: 1KS 2KS 3KS 4KS 5KS U-eigenvectors … … … … … dxy 1 U11 U12 U13 U14 U15 dominated dyz 2 U21 U22 U23 U24 U25 by d-functions U dz2 3 U31 U32 U33 U34 U35 neither dxz 4 U41 U42 U43 U44 U45 normalized dx2-y25 U51 U52 U53 U54 U55 nor othogonal … … … … … … S=UTU U – the (5x5) matrix; C=US-1/2 eigenfunctions of the Effective one-electron Hamiltonian heff we seek; 5 i= ci d; iKS=(i|heff|i); =1 5 vLF=C.E.CT=h= ci. iKS.ci; E=diag iKS Obtained without any assumptions as is done in crystal field theory or the AOM; accounts both for electrostatic and covalent contributions to the LF: h(d|ho+h´ |d)+(L) (d|h´|L)(L|h´|d)/(d-L) Application to Co(H2O)62+ and Co(H2O)63+ LFDFTa 4T 4T 1g 2g 4A 4T 2E 2g 1g g 10Dq B C Co(H2O)62+ SORCIb 0 7755 16617 19548 0 6630 14313 19970 6224 13130 expc 8100 16000 19400 21550 11300 8862 9300 860 3013 a this work b Neese et al. Coord.Chem.Rev., in press. cJorgensen,Abs.Sp.Chem.Bonding. Co(H2O)63+ LFDFTa SORCIb exp.c 1A1g 0.0 0.0 1T1g 15370 15670 16600 1T2g 24537 23600 24900 3T1g 9212 5257 3T2g 13782 10779 5T2g 9660 10Dq 16994 18200 B 775 670 C 2781 this work b Neese et al. Coord.Chem.Rev., in press. cJorgensen,Abs.Sp.Chem.Bonding. a [Co(H2O)63+][H2O]12 LFDFTa 0.0 15669 24726 10271 14798 12649 17102 750 2415 athis work Conclusion It is possible to predict UV-Vis solution spectra with experimental accuracy using DFT. Deviations between experiment and theory larger than 2’000cm-1 (0.25eV) necessitate refined model chemistry e.g. embedding, structure, etc. However, calculation of excited states still requires some expertise and thinking in many cases. Lanthanides THE DFT BASED LIGAND FIELD MODEL AND ITS APPLICABILITY TO LnCl63- (Ln=Ce to Yb) COMPLEXES M. Atanasov, C. Daul, H.U.Güdel, T.A.Wesolowski: Inorg. Chem. 2005,44,2954-2963 Introduction In this work we extend and explore the applicability of the DFT based ligand field (LF) model (LFDFT, put forward and applied with success to electronic and ESR spectra of 3d-transition metal (TM) complexes1,2,3) to complexes of rare earths (LnIII). Results from calculations and experiment are compared to test the method. We describe a computational scheme within DFT which is able to predict with success LF properties of Ln complexes without recourse to experimental data. The LFDFT method The LFDFT-procedure consists of the following steps: i) get a geometry of the complex: either from experiment or from a geometry optimization. ii) calculate the electron density from an average-of-configuration Kohn-Sham DFT SCF calculation (n/7 occupation of each MO-orbital, identified as being dominated by TM 4ffunctions beforehand). iii) Using this electron density calculate energies of all Slater determinants resulting from the 14 total of n replacements of n f-electrons over 14 spin-orbitals. The electron density is taken as frozen (no SCF iterations are done). iv) Use these energies and a least-squares fit to get the LF-model parameters (MATLAB scripts are used to facilitate the work). v) Introduce these parameters into a conventional CI - LF-program to calculate electronic energies and properties of all electronic states. The model is parametric but its model parameters are obtained from first principles, i.e. without recourse (fit) to experiment, as different from usual applications of ligand field theory. Results Figure: Left : Model cluster for DFT based ligand fi eld calculations on LnCl63complexes. Right : Symmetry species, orbital shapes and para meters defi ning the ligand fi eld splitting of the f-orbitals in an octahedra l coordination • • • • • • • • The parameters 1 and 2 calculated from the LFDFT and obtained from a fit to experimental high-resolute spectra are compared in Figure next. Calculated 1 and 2 values show deviations from experimental ones, which increase from left to right of the Ln series. Artificial splitting is due to overestimate of TM-ligand covalency by the DFT method. To eliminate this drawback of the DFT method, we propose the following procedure. From the KS matrices of eigenvectors C (in columns) and eigenvalues E(diagonal) one reconstructs the KS-Hamiltonian (S is the overlap matrix) : H.C =S.C.E (2) Taking a transformation to an orthogonal basis: C’=S1/2 .C (3) Explicitly: (S-1/2 . H . S-1/2) . (S1/2 . C)=(S1/2 . C) . E (4) • H’ . C’=C’ . E H'ff C'E C' ' HLf (5) H'fL (6) ' HLL • H' S • We neglect H’fL and focus on H’ff . Diagonalization of H’ff yields eigenvalues which account both for Coulombic (crystal field like) and Pauli (exchange) repulsions. We call this model BLDFT. Application to LnCl63- (Fig.) yields values of 1 and 2 which agree with experimental for nearly all members of the Ln-series. Only for Ce, Pr and Nd the LFDFT method, which includes in addition ligand-metal charge transfer yields results which agree better with experiment. • • 1 2 1 2 H S T Figure: Values of 1 and 2 (in cm-1) from LFDFT calculations and from the interpretation of the f-f spectra (experimental values are taken from Ref.4) for LnCl63- complexes. Computational details: DFT Program: ADF, release ADF2003.01, basis set: triple zeta plus polarization (ZORA) ; core: no-core, all-electron calculation; relativistic: scalar ZORA, Functional: PW91 Figure: Values of 1 and 2 (in cm-1) from BFDFT calculations and from the interpretation of the f-f spectra (experiment) for LnCl63- complexes; computational details. Conclusion 1. Mixing of 4f with 3p-Cl orbitals in LnCl63- does not exceed 1%, as an analysis of 4f4f and ligand-to-metal CT spectra shows. 2. DFT using current functionals and ADF- data base (basis sets) overestimates covalent mixing in nearly all LnCl63- except in Ce, Pr and Nd. 3.This leads to artificially large LFDFT splittings for Ln= SmIII to YbIII. 4. A computational scheme proposed in this work is developed (BLDFT) which helps to exclude artificial charge transfer effects, but to account for Coulombic and Paulirepulsion of the 4f- from the ligand-closed-shell-electrons. It leads to good agreement between calculated LF energies and experimental values.This lends support of an early concept (Ballhausen and Dahl [5]) describing ligand field in terms of a pseudopotential. 5. Our results are consistent with a study using first principles embedding potential for LnCl63- complexes [6]. References [1] M.Atanasov, C.A.Daul and C. Rauzy, C. Chem.Phys.Lett. 2003, 367, 737. [2] M.Atanasov, C.A.Daul and C. Rauzy, Structure and Bonding, 2004, 106, 97. [3] C.Daul, C.Rauzy, M.Zbiri, P.Baettig, R.Bruyndonckx, E.J.Baerends and M.Atanasov, Chem.Phys.Lett. in press. [4] M.F.Reid and F.S.Richardson, J.Chem.Phys. 1985, 83, 3831. [5] C.J.Ballhausen and J.P.Dahl, Theoret.Chim.Acta, 1974, 34, 169. [6] M.Zbiri, M.Atanasov, C.Daul, J.Garcia-Lastra and T.A.Wesolowski, Chem.Phys.Lett., CPL 2004. Fine Structure Ligandfield calculation of the ZFS in Ni(H2O)6++ Hamiltonian n n n ZM N Zl n 1 1 H i d i si 2 i 1 i 1 ri l rli i j 1rij i 1 n n 1 H H0 VLF d i j 1rij i 1 i si The following parameters are needed Ligandfield parameters: d VLF d ci ci iKS Electrostatic matrix elements: d d d d f Racah parameters Sin-orbit coupling matrix elements: d r d k orb_ red R 3d r3 R 3d i KS-orbitals with dominant d-character in a ZORA DFT calculation 7 8 8 (2) (4) (4) Int.J.Quant.Chem., 102,119-131(2005) ESR g- and A-tensors, Chem.Phys.Lett. 399,2004,433 Spin-orbit coupling: <sms,a|Hso|sms´,b> ζnl<sms,lml(a,)|ls|sms´,lml´(b,)> ζnl=<Rnl| 1 dV |Rnl> |l,ml>-real spherical harmonics xy,yz,z2,xz,x2-y2 r dr s, s,, c, c Co2+, ζ=-598 cm-1 k-orbital reduction factor; k=(i,) (ci)2/(2l+1)=0.77 i,=1…5 17b2 (xy) 7a2 19a1 (yz) (x2-y2) 7b1 (xz) 18a1 (z2) B C (x´y´|hlf|x´y´) (y´z´|hlf|y´z´) (z2´|hlf|z2´) (x´2-y´2|hlf|x´2-y´2) (z2´|hlf|x´2-y´2) (x´z´|hlf|x´z´) ζ k P 512±53 cm-1 3118±225 cm-1 -1071±407 cm-1 6308 ±407 cm-1 5052 ±407 cm-1 3731 ±407 cm-1 2771 ±407 cm-1 -24003 ±407 cm-1 460 cm-1 0.77 188.10-4 cm-1 0.147 1. Ground state Kramers doublet |0±> obtained by diagonalization of the full 120x120 CI matrix: SDd | h g h | SDd lf ER SO hlf-ligand field,gER-1/r12-interel.repulsion,hSO-spin-orbit coupling 2.The g-tensor is obtained by equating the Zeeman matrix elements <O±|kL+geS|O±> with those of the spin-Hamiltonian <±|g.Seff|±>: g.Seff O kL ge S O ......... ...................... ...........................O ..................O 1 1 g ( g ig ) z x y O kL g e S O 2 2 . 1 1 O kL g e S O ( g ig ) g x y z 2 2 =x,y,z; L=(i=1,n)li; S=(i=1,n)si; O kL g e S O O kL g e S O . or: gz O kL g e S O O kL g e S O gx O kL g e S O O kL ge S O gy i( O kL g e S O O kL g e S O ) A-tensor Interaction between nuclear and electron angular momenta: H HF ΔHF .I ΔHF n HF - the hyperfine coupling operator 1 P (l i ai .si ) 7 i 1 1 2 3 1 orbital angular momentum of the electron aF electron spin the Fermi contact term. P 2 ai 4.si (l i .si ).l i l i .(l i .si ) 3 3 P g r P – electron-nuclear dipolar coupling constant: e N 3d 8 - related to the Fermi hyperf.const. aF ge N i (0) i (0) 3 i The A-tensor is calculated similarly to the g-tensor: Az O hf O O hf O Ax O O O O hf hf Ay i( O hf O O hf O ) Results:g-tensor gxx ZORA LDA GGA 2.85 2.76 LFDFT-GGA A B 3.21 2.80 Exp. gyy 1.89 1.93 1.87 1.94 1.90±0.03 gzz 1.91 1.92 1.87 2.11 2.00±0.02 giso 2.22 2.20 2.28 2.32 2.92/3.26 A: two states model 97%|dyz1dxy2,2A2>+3%|dz21dxy2,2A1> B: full calculation, giso=(gxx+gyy+gzz)/3 Exp.values: range of values, because of strong dependence on the host lattice. Multiplet splittings: LFDFT(GGA) LFDFT exp. 2A 2 0.0 - 2A 1 4665 - 2B 1 7036 4000 2A 1 10885 8000 4B 1 13021 - 4A 1 12835 - 4B 1 14694 - A-tensor values of Co(acacen) determined by spin-orbit restricted ZORA calculation and the LFDFT approach: ZORA LDA GGA LFDFT GGA A B Exp. Axx 151 108 95 55 100/128 Ayy 25 28 12 14 32/40 Azz 66 71 39 19 29/34 A: two states model 97%|dyz1dxy2,2A2>+3%|dz21dxy2,2A1> B: full calculation, giso=(gxx+gyy+gzz)/3 Exp.values: range of values, because of strong dependence on the host lattice. ZORA references; g-tensor, A-tensor: spin-restricted, spin-orbit ZORA calculations (variational relativistic), homogeneous magnetic field treated as a first order perturbation: g-tensor: van Lenthe et al, J.Chem.Phys. 107, 1997, 2488-2498; A-tensor: van Lenthe et al, J.Chem.Phys. 108, 1998, 4783-4796. LFDFT references: 1. Chem.Phys.Lett. 367(2003) 737-746. LFDFT 2. Struct.and Bonding, 106(2004) 97-125. LFDFT 3. Chem.Phys.Lett. 399(2004) 433-439. g, A-tensors 4. Int.J.Q.Chem. 102 (2005), 119-131, spin-orbit coupling 5. Inorg.Chem. 44(2005), 2954-2963. rare earths. 6. Chem.Phys.Lett. 427(2006) 449-454 CoII,CuII porphyrins gtensors. Review articles: C.R.Chimie, 8(2005) 1421-1433; Chimia, 59(2005) 504-510.