Transcript Slide 1
Modeling of LaO1-xFxFeAs from the Strong Coupling Perspective: the Magnetic Order and Pairing Channels. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville, TN, USA. Collaborators: M.Daghofer, J. Riera., E. Arrigoni, D. Scalapino and E. Dagotto. Supported by NSF grants DMR-0706020. F doped LaOFeAs • Quaternary oxypnictides: LnOMPn (Ln: La, Pr; M:Mn, Fe, Co, Ni; Pn: P, As). • Fe –As planes. • La-O planes. • Fe form a square lattice. • F replaces O and introduces e- in Fe. Experimental Properties • Tc up to 28K (above 50K replacing La by other rare earths). Chen et al., cond-mat:0803.0128 • Bad metal or semiconductor in undoped regime. •Anomalous specific heat. Suggest nodes in SC state. Dong et al., cond-mat: 0803.3426 •Anomaly in resistivity at 150K. Parent compound • Long range magnetic order. • Small order parameter: suggests small or intermediate U and J. De la Cruz et al., cond-mat: 0804.0795. See also McGuire et al., cond-mat:0804.0796; Dong et al., cond-mat:0803.3426 and others. Doped compound • No magnetic order (neutrons, NMR, Mossbauer). • Nodal Gap (specific heat,NMR) or large ungapped regions (integrated PES). • Two gaps (NMR). • Unconventional mechanism, singlet pairing (mSR, NMR). • Hole doping also occurs. (La1-xSrxOFeAs). La1-xSrxOFeAs Wen et al., cond-mat:0803.3021. Theory • Band Structure: 3d Fe orbitals are important. (LDA) • dxz and dyz most important close to eF. (Korshunov et al., condmat:0804.1793). • Metallic state. • Possible itinerant magnetic order. Singh et al., cond-mat: 0803.0429; Xu et al., condmat:0803.1282; Giovannetti et al., cond-mat: 0804.0866. Fermi Surface • Two hole pockets at G point. • Two electron pockets at M. • dxz and dyz orbitals (with some dxy hybridization). ARPES Liu et al., cond-mat: 0806.2147 NdFeAsO1-xFx LDA Singh et al., cond-mat: 0803.0429 Interactions: strong or weak electronic correlations? • X-ray spectra: weak correlation (Kurmaev et al., cond.-mat.: 0805.0668). • DMFT : strong correlation (Haule et al., condmat: 0803.1279). • RPA: U~3, J=0 (Raghu et al., cond.-mat: 0804.1113). • RPA and mean field calculations including Coulomb and Hund interactions are predicting the expected magnetic order and all possible variations of the order parameter. Numerical Simulations (Daghofer et al., cond-mat:0805.0148). • Relevant degrees of freedom need to be identified. • Construct the minimal model. • Exact diagonalization in a small cluster. • Very successful with the cuprates: found magnetic order and correct pairing symmetry. Minimum Model • Consider the Fe-As planes. • Two d orbitals dxz and dyz based on LDA and experimental results. • Consider electrons hopping between Fe ions through a double exchange process Fe-AsFe. Square Fe lattice. • Interactions: Coulomb and Hund. a/ 2 / 2 /a 2 a 2 a Hoppings H k t1 (d i, x , d i x , x , d i, y , d i y , y , h.c.) i , t 2 (d i, y , d i x , y , d i, x , d i y , x , h.c.) i , t3 (d i, x , d i x y , x , d i, x , d i x y , x , i , d i, y , d i x y , y , d i, y , d i x y , y , h.c.) t 4 (d i, x , d i x y , y , d i, y , d i x y , x , h.c.) i , t 4 (d i, x , d i x y , y , d i, y , d i x y , x , h.c.) i , Obtain from Slate-Koster overlap integrals between Fe-d and As-p orbitals and Fe-As-Fe double exchange hopping. Hoppings t1 2[(b a ) g ] dd 2 2 2 t 2 2[(b 2 a 2 ) g 2 ] dd t3 2(a b g ) 2 2 2 t 4 (ab g ) 2 a 0.324( pd ) 0.374( pd ) b 0.324( pd ) 0.123( pd ) g 0.263( pd ) 0.310( pd ) pd=1 pd=-0.2 dd=-pd dd=0.1pd The hoppings are obtained in terms of the lattice parameters and the pd overlap Integrals. Interaction H int J U ni , , ni , , (U ' ) ni , x ni , y 2 i i , 2 J Si , x .Si , y J (d i U ' U 2J i i , x , d i , x , d i , y , d i , y , h.c.) Numerical Results: no doping • U<1 for metal in undoped case. • If J=U/4, U<1 to reproduce experimental order parameter in parent compound. • S(k) peaks at (0,) and (,0). Electron Doping Spin singlet J=U/4 (k ) (cos k x cosk y )d k, , d k , , Spin triplet (k )1 (cos k x cosk y )(d k, x, d k , y , d k, y , d k , x, ) Symmetry of the Pairing Operator # 9 12 IR Basis Spin Orbital Parity B2g (coskx+cosky) t1 S E Nodal A2g (coskx+cosky) it2 T O Gapless According to D4h point group Gap See Y. Wan and Q-H Wang, condmat:0805.0923. Sixteen possible pairing operators. Gap Symmetry s H BCS xx xy 0 V xy yy V V xx 0 xy 0 V V0 cos k x cos k y V 0 T H BCS xy yy xx xy 0 V xy yy V V xx 0 xy 0 V V0 cos k x cos k y V 0 xy yy Band Structure gap Y M singlet triplet X G node Fermi Surface Two Gaps • Experimental indications of two gaps. • Experiments indicate “dwave” gap. Y. Wang et al., cond-mat: 0806.1986; K. Matano et al., cond-mat: 0806.0249; F. Hunte et al., cond-mat:0804.0485. Singlet (from numerical simulations) • No gap on epockets. • Nodes on hpockets. • Two gaps. • “d-wave” Conclusions • U and J have to be small or intermediate. • The above does not mean “weak coupling” since the ground state in the undoped case appears to be a magnetically highly correlated state. • In the region of parameter space explored the favored singlet pairing state has “d-wave” symmetry. • Hole FS develop gaps with nodes. No gaps on electron FS. • The spin singlet pairing operator that we obtained does not disagree with any of the experimental results currently available. Symmetry breaking for (0,) U=0.5, J=0.125, pd=-0.2 U=1., J=0.25, pd=-0.5