Transcript Document

Speech processing NNSU Lab Summer 2003 Seminar

Intel

®

Integrated Performance Primitives

vs. Speech Libraries & Toolkits Math Inside & Outside

by Vitaly Horban [email protected]

Speech processing

Agenda

NNSU Lab Summer 2003 Seminar

   

Comparison Intel ® IPP 3.0 and speech libraries & toolkits Overview mathematical methods for speech processing General assessment of Intel ® IPP 3.0

Summary

               

Speech processing

Acronyms

LP RELP PLP AR LSP LSF MFCC MLSA DCT DTW SVD VQ RFC HMM ANN EM Linear Prediction Residual Linear Prediction Perceptual Linear Prediction Area Ratios or Autoregressive Line Spectrum Pairs Line Spectral Frequencies Mel-Frequency Cepstrum Coefficients Mel Log Spectral Approximation Discrete Cosine Transform Dynamic Time Warping Single Value Decomposition Vector Quantization Rise/Fall/Connections Hidden Markov Model Artificial Neural Network Expectation/Maximization NNSU Lab Summer 2003 Seminar

               

Speech processing

Acronyms

(continue)

CMS MLP LDA QDA NLDA SVM DWT LAR PLAR GMM WFST CART HNM MBR SR TTS Cepstral Mean Subtraction Multi Layer Perception Linear Discriminant Analysis Quadratic Discriminant Analysis Non-Linear Discriminant Analysis Support Vector Machine Discrete Wavelet Transformation Log Area Ratio Pseudo Log Area Ratio Gaussian Mixture Model Weighted Finite State Transducer Classification and Regression Trees Harmonic plus Noise Modeling Minimum Bayes Risk Speech Recognition Text-To-Speech synthesis NNSU Lab Summer 2003 Seminar

 

Speech processing

IPP vs. CMU Sphinx

Feature processing

LP

  

Power Spectrum Cepstrum LSP

   

Mel-scale values Mel-frequency filter bank Mel-cepstrum Linear scale values Acoustic & Language models

Gaussian mixture

 

Likelihood of an HMM state cluster HMM transition matrix

  

NNSU Lab Summer 2003 Seminar Feature processing

LP

Spectrum

 

Cepstrum MEL: filter, cepstrum, filter bank

PLP: filter, cepstrum, filter bank Language model

 

Context-free grammar N-gram model Acoustic model based on HMM

Each HMM state – set of Gaussian mixture

HMM order

  

HMM position HMM transition matrix Baum-Welch training

 

Speech processing

IPP vs. CSLU Toolkit

Feature processing

Power Spectral analysis (FFT)

  

Linear predictive analysis (LPC) LP reflection coefficients LSP

   

DCT RFC Cross correlation coefficients Covariance matrix

  

Mel-scale cepstral analysis Derivative functions Energy normalization Acoustic & Language model

VQ

 

Weights, Means and Variances EM re-estimation Viterbi decoding

  

NNSU Lab Summer 2003 Seminar Feature processing

Power spectral analysis (FFT)

Linear predictive analysis (LPC)

   

PLP Mel-scale cepstral analysis (MEL) Relative spectra filtering of log domain coefficients (RASTA) First order derivative (DELTA)

Energy normalization Language model

  

Word pronunciation Lexical trees Grammars Acoustic model based on HMM/ANN

VQ initialisation

 

EM training Viterbi decoding

 

Speech processing

IPP vs. Festival

NNSU Lab Summer 2003 Seminar Feature processing

Power Spectrum

Feature processing

Power spectrum

     

Reflection to Tilt, PitchmarkToF0, Unit Curve (RFC)

 

LPC

MEL

LSF

LP Reflection coefficients

Energy normalization

Acoustic & Language model

Tilt to RFC, RFC to Tilt, RFC to F0 LPC MEL LSF LP Reflection coefficients Fundamental frequency (pitch) Root mean square energy Language model

Viterbi decoding

N-gram model

Context-free grammar

   

WFST Acoustic model

Regular expressions CART trees Viterbi decoding

 

Speech processing

IPP vs. ISIP

Feature processing

Derivative functions

  

Spectrum Cepstrum Cross correlation

     

Covariance matrix Energy normalization Filter bank Area Ratio Durbin’s recursion Reflection coefficients (Schur)

Gaussian probability Acoustic & Language model

Viterbi decoding NNSU Lab Summer 2003 Seminar

 

Feature processing

  

Derivative functions Spectrum Cepstrum

  

Cross correlation Covariance matrix Covariance (Cholesky)

      

Energy (Log, dB, RMS, Power) Filter bank Log Area Ratio (Kelly-Lochbaum) Autocorrelation (Durbin recursion, Leroux-Guegen ) Lattice (Burg) Reflection coefficients Gaussian probability Acoustic & Language model (HMM)

N-gram model

 

Viterbi decoding Baum-Welch training

  

Speech processing

IPP vs. MATLAB

Frequency Scale Conversion

 

Mel scale Linear scale Transforms

  

DFT FFT DCT Distance

Euclidean

  

Mahalanobis DTW (observation and reference vector sequences) Bhattacharya

   

NNSU Lab Summer 2003 Seminar Frequency Scale Conversion

 

Mel scale Equivalent rectangular Bandwidths (ERB) Transforms

   

FFT (real data) DCT (real data) Hartley (real data) Diagonalisation of two Hermitian matrices (LDA, IMELDA) Vector distance

Euclidean

Squared Euclidean

  

Mahalanobis Itakura (AR, Power spectra) Itakura-Saito (AR, Power spectra)

COSH (AR, Power spectra) Speech enhancement

Martin spectral subtraction algorithm

Speech processing

IPP vs. MATLAB (continue)

     

Feature processing

LPC

  

Area ratio Spectrum Cepstrum

     

RFC DCT LSP LSF Reflection coefficients RFC Autocorrelation coefficients Cross correlation coefficients Covariance matrix Mel-scale cepstral analysis Derivative functions Energy normalization

NNSU Lab Summer 2003 Seminar LPC analysis and transforms

Area ratios

Autoregressive or AR

   

Power spectrum Cepstrum DCT Impulse response (IR)

      

LSP LSF Reflection coefficients Unit-triangular matrix containing the AR coefficients Autocorrelation coefficients Expand formant bandwidths of LPC filter Warp cepstral (Mel, Linear)

 

Speech processing

IPP vs. MATLAB (continue)

Speech Recognition

Feature processing

  

Model Evaluation Model Estimation Model Adaptation

Vector Quantization Speech coding (ITU G.711, G.723.1, G.729)

 

Linear PCM A-law

 

Mu-law VQ given codebook

  

NNSU Lab Summer 2003 Seminar Speech synthesis

Rosenberg glottal model

Liljencrants-Fant glottal model Speech Recognition

Mel-cepstrum

 

Mel-filter bank Cepstral & variances to power domain

Gaussian Mixture Speech coding (ITU G.711)

  

Linear PCM A-law Mu-law

 

VQ using K-means algorithm VQ using the Linde-Buzo-Gray algorithm

Speech processing

IPP vs. HTK

      

Feature processing

LPC

  

Area ratio Spectrum Cepstrum

    

RFC DCT LSP LSF Reflection coefficients Autocorrelation coefficients Cross correlation coefficients Covariance matrix Mel-scale cepstral analysis Derivative functions Energy normalization VQ NNSU Lab Summer 2003 Seminar

Feature processing

LPC

Spectral coefficients

   

Cepstral coefficients Reflection coefficients Gaussian distribution K-means procedure

       

PLP Autocorrelation coefficients Covariance matrix Mel-scale filter bank MFCC Third differential Energy VQ codebook

  

Speech processing

IPP vs. HTK (continue)

Model adaptation

EM training algorithm Acoustic & Language model

Viterbi decoding

Likelihood of an HMM state cluster

HMM transition matrix Speech coding (ITU G.711, G.723.1, G.729)

 

Linear PCM A-law

 

Mu-law VQ given codebook

  

NNSU Lab Summer 2003 Seminar Model adaptation

Maximum Likelihood Linear Regression (MLLR)

 

EM technique Bayesian adaptation or Maximum Aposteriori Approach (MAP) Acoustic & Language model based on HMM

Grammar

N-gram model

 

Viterbi training Baum-Welch training Speech coding

Linear PCM

 

A-law Mu-law

Speech processing

Possible extension IPP 3.0

           

Feature processing

  

PLP: filter, cepstrum, filter bank Relative spectra filtering of log domain coefficients (RASTA) Fundamental frequency (pitch) RMS energy Covariance (Cholesky) Energy (Log, dB, RMS, Power) LAR (Kelly-Lochbaum) Autocorrelation (Leroux-Guegen) Lattice (Burg) Equivalent Rectangular Bandwidths (ERB) Unit-triangular matrix (AR coef.) Expand formant bandwidths (LP) Third differential Hartley transform Diagonalisation of two Hermitian matrices (LDA, IMELDA)

     

NNSU Lab Summer 2003 Seminar Model adaptation

 

Maximum Likelihood Linear Regression (MLLR) Bayesian adaptation or Maximum Aposteriori Approach (MAP) Model evaluation

Itakura (AR, Power spectra)

 

Itakura-Saito (AR, Power spectra) COSH (AR, Power spectra) Speech synthesis

 

Rosenberg glottal model Liljencrants-Fant glottal model Speech enhancement

Martin spectral subtraction Speech coding

VQ using K-means algorithm

VQ using the Linde-Buzo-Graym Acoustic model based on HMM

Baum-Welch training

Speech processing

Speaker Characteristics

Feature processing

                

Preemphasize Cepstral Energy Cepstral Mean Subtraction (CMS) MFCC, LPCC, LFCC LPC (to Cepstral, to LSF) Residual Prediction Mel-cepstral Fundamental frequency (F0) LSF ( Bark scale ) RMS energy Levinson-Durbin recursion Covariance (Cholesky) Delta cepstral (Milner, High order) Pseudo Log Area Ratio (PLAR) DWT VQ

 

NNSU Lab Summer 2003 Seminar Acoustic model

Distance

         

Bhattacharya

DTW Euclidean Viterbi decoding EM ( Lloyd ) K-means (Lloyd) PLP MLP Twin-output MLP LDA NLDA Generative models

GMM

HMM ( Baum-Welch )

 

Speech processing

Speech Processing

Feature processing

     

LPC LSP F0 Levinson-Durbin recursion Tilt Gaussian Acoustic & Language model

   

Baum-Welch training Viterbi decoding CART Statistical language modeling

 

NNSU Lab Summer 2003 Seminar Speech enhancement Speech Analysis

   

Discrete Wigner Distribution DWT Pitch Determination Code Excited Linear Predictor (CELP)

 

Speech processing

Speech Recognition

Feature processing

       

DCT MFCC Mel-frequency log energy coefficients (MFLEC) Subband (SB-MFCC) CMS Within Vector Filtered (WVF-MFCC) Robust Formant (RF) algorithm Split Levinson Algorithm (SLA) Vector Quantization

  

VQ correlation Single VQ Joint VQ

NNSU Lab Summer 2003 Seminar Acoustic & Language model

Viterbi decoding

             

LDA QDA MLP PLP EM re-estimation Minimum Bayes Risk (MBR) Maximum Likelihood Estimation (MLE) NN (Elman predictive) HMM (Baum-Welch) GMM Buried Markov Model Decision tree state clustering WFST Dynamic Bayesian Networks

Speech processing

Speech Synthesis

Feature processing

              

MFCC Log Area Ratio (LAR) Bark frequency scale FFT Power Spectrum LPC LSF F0 Likelihood Ratio Residual LP Mel Log Spectral Approximation (MLSA) MLSA filter Covariance Energy Delta, DeltaDelta

 

NNSU Lab Summer 2003 Seminar Acoustic & Language model

Viterbi decoding

    

HMM (Baum-Welch) EM training WFST CART Harmonic plus Noise Modeling (HNM) Distance

Euclidean

     

Kullback-Leibler Mean Squared Log Spectral Distance (MS-LSD) Mahalanobis Itakura-Saito Symmetries Itakura RMS (root mean squared log spectral)

Speech processing

New Speech Functionality

Feature processing

               

Bark scale Fundamental frequency Likelihood Ratio Covariance (Cholesky) MLSA CMS SB-MFCC WVF-MFCC Robust formant algorithm Split Levinson algorithm LPCC LFCC RMS energy Delta cepstral (Milner, High order) Pseudo LAR PLP

 

NNSU Lab Summer 2003 Seminar Acoustic & Language model

HMM (Baum-Welch)

  

HNM MLP WFST

   

CART LDA, NLDA, QDA Minimum Bayes Risk (MBR) Maximum Likelihood Estimation

  

NN (Elman predictive) Discrete Wigner Distribution Code Excited Linear Predictor Distance

Kullback-Leibler

Mean Squared Log Spectral Distance (MS-LSD)

  

Itakura-Saito Symmetries Itakura RMS

Speech processing

Summary

NNSU Lab Summer 2003 Seminar

  

Intel ® IPP 3.0 now covers most useful primitives for speech processing Speech enabled applications require still more primitives Developers and researches need more samples

Speech processing

Thank You !

NNSU Lab Summer 2003 Seminar

Vitaly Horban [email protected]