Transcript ISMD 2007

ISMD 2007
Berkeley, August 5-9 2007
Chairman: Nu Xu
Seria ISMD
• Początek: Paryż 1970 (Lestienne,Salmeron,
Sosnowski, Krzywicki + Wróblewski itd.),
Helsinki 71, Zakopane 72 (KrakówWarszawa), Pawia 73..., Tihany 2000,
Datong 01, Alushta 02, Kraków 2003,
Sonoma 04, Kromeriz 05, Parati 06
• Nazwy zmienne, ale zawsze „multiparticle”
(w latach 70’ mały margines fizyki cząstek)
Program
1.Jet physics (Salgado, Takai) 7 referatów
2.Fluctuations and Correlations (Padula, Strickland,
Soltz, Roland) 13
3.Small x and Diffraction (Kovchegov, Staśto) 10
4.Soft Interactions (Cebra, Soldner-Rembold) 10
5.Astroparticle Physics (Drescher, Huentemeyer) 6
6.Particle Propagating in Dense Matter (CasalderreySolana, Dremin, Jia, Fuqian Wang) 15
7.Heavy Quark Production (Bauer, Gary, Huang) 11
Statystyka
• Uczestnicy: 85, afiliacje: 44 USA, 11 RFN,
4 Brazylia, Rosja, 3 Polska, Włochy, 2
Czechy, Francja, Węgry, 1 Chiny, Holandia,
Indie, Izrael, Japonia, Kanada, Słowacja,
Szwajcaria, Szwecja, Ukraina.
• Uwaga: afiliacje, nie narodowości!
• Referaty: 73: 7+13+10+10+6+15+11+1.
Polscy uczestnicy i referaty
• D.Antończyk (Frankfurt), Z.Chajecki
(Ohio), P.Danielewicz (Michigan), KF (UJ),
A.Galas (IFJ), A.Kisiel (Ohio), R.Maj (AŚ),
A.Staśto (Penn), M.Szuba (LBL)+B.Jacak,?
• P.Danielewicz-imaging review (MSU)
• A.Kisiel-STAR and Therminator (OSU)
• A.Galas-production in DIS, gp from ep
• KF-HERMES and absorption
Co naprawdę nowego?
• Astrocząstki: ograniczenie GZK działa,
korelacje - źródła?
• Asymetria eliptyczna: przyczynek korelacji
• Korelacje 3-cząstkowe
• Odkrycie Sb, Sb‘,Xb
Ograniczenie GZK, klastry
• Kai Martens (HiRes, U. of Utah)
• Glennys Farrar (New York U.)
Results from HiRes
and Observation of the GZK
Suppression
HR2
HR1
Kai Martens
High Energy Astrophysics Institute
Department of Physics, University of Utah
for the HiRes Collaboration
HiRes Monocular Spectra
HR1: longer exposure
 high energy
HR2: larger elevation coverage
 low energy
data:
HR1: 5/97-6/05
HR2: 12/99-8/04
energy scale uncertainties:
- missing energy
5%
- energy loss rate
10%
- fluorescence yield
6%
- atmospheric conditions 4%
- photometric calibration 10%
 total (energy):
17%
  flux uncertainty:
30%
(@ g=2.8)
flux x
E3
avoid double counting:
remove HR1 events that also
are in the HR2 data set
Broken power-law fits:
a.) one vs. two breakpoints:
2 reduced by 23.4
 4.5s
b.) compare measured data
to red line extrapolation:
expect: 39.9
observe: 13
 4.8s (P=7x10-7)
Old plots:
AGASA
AGASA (E–20%)
Quacks like
duck, don’t
it?
HiRes
Composition
Guided
Fits
source model:
all sources inject with E


flux
 g = 2.42
g
uniform with redshift
evolution (1+z)m
 m = 2.46
   e  e 
n  p  e-  e
composition as
measured !
future: astronomy inspired
redshift evolution
Rescaling energies to dip
=> consistency!
• Left: published spectra x E3 from different expts
• Right: spectra after shifting energies by factors
AG = 0.9; HR = 1.2; Yk = 0.75; Auger = 1.2
• Shift => consistent normalizations of all spectra, for Auger = 1.4.
(HR = 1.2 + difference in AF yield assumptions => Auger ~ 1.35)
UHECR multiplets
• Cluster candidate in published AGASA-HiRes data:
– 5 events, chance probability 2 10-3
– Energies (15), 38, 53, 55, 78 EeV (1 EeV = 1018 eV)
– (b, l) = (55o,145o)
(“Ursa Major Cluster”)
• Projecting from AGASA-HiRes suggests with a dataset like Auger
~ 1 multiplet with 8-10 UHECRs
 1 multiplet with ~ 6 UHECRs
~ 5 multiplets with ~ 4 UHECRs
• Need good analysis tools to avoid using false multiplets. Maximum
Likelihood method has been developed (GRF)
• If (when!) such multiplets are found, they will give a powerful
constraint on GMF and sources.
Wnioski z astrofizyki
• Ograniczenie GZK (strata energii w
produkcji p na fotonach tła) jednak chyba
działa, więc dziesiątki modeli zbędne.
• Być może są klastry kierunkowe dla
najwyższej energii (niezaburzone przez pole
magnetyczne); Auger?
Fig. 1. Layout of the Pierre Auger Southern Observatory
The Pierre Auger Collaboration et al., Science 318, 938 -943 (2007)
Published by AAAS
Fig. 2. Aitoff projection of the celestial sphere in galactic coordinates with circles of radius 3.1{degrees}
centered at the arrival directions of the 27 cosmic rays with highest energy detected by the Pierre Auger
Observatory
The Pierre Auger Collaboration et al., Science 318, 938 -943 (2007)
Published by AAAS
Azimuthal asymmetry –
czy to naprawdę „elliptic flow”?
• Rudy Hwa (Oregon U.)
• Gunther Roland (STAR, MIT)
Conclusion
• Azimuthal anisotropy is mainly a ridge effect. No fast
thermalization or hydrodynamical flow are needed.
• Hydrodynamics may still be applicable after some time,
but it is not needed for v2, for which the relevant physics
at <1 fm/c is crucial --- semi-hard scattering at qT<3.
• For pT<1.5 GeV/c, the analysis is simple, and the result
can be expressed in analytic form that agrees with data.
• For pT>1.5 GeV/c, shower partons must be considered.
Jet dominance (>3GeV/c) will saturate v2.
• No part of the study suggests that the medium
behaves like a perfect fluid.
STAR analysis
• Znane efekty korelacyjne (clusters,
minijets...) dają przyczynki do asymetrii
azymutalnej niezwiązane z przepływem
• Należy je odjąć przed porównaniem danych
z modelami hydrodynamicznymi
• STAR, PHOBOS (Krzysztof Woźniak)
Nowe dane o korelacjach
• Stefan Kniege (Frankfurt U., CERES)
• Jason Ulery (Purdue U., STAR):
• 3-particle correlations to discriminate
between the models of „back” jet emission
Summary
• Non gaussian shape on the away side of
2 particle correlation function
• Shape of the correlation function for different charge
combinations indicate
charge ordering in the fragmentation process
•Shape of the 3 particle correlations indicate cone like structure
on the away side of the jet
Further investigations are needed to draw final conclusions
Summary and Conclusions
• Three 3-particle analyses at RHIC.
• PHENIX Analysis
– Shape consistent with conical emission simulation.
• STAR Cumulant Analysis
– Non-zero 3-particle correlations.
• STAR 2-Component Analysis
– Consistent with conical emission at about p1.45
radians in central Au+Au.
– PT independent angle suggests Mach-cone
emission.
Odkrycie nowych pięknych
barionów
• W tablicach z 2006 roku tylko Lb
• Teraz identyfikowane: Sb, Sb*, Xb, Wb
• Tania Moulik (U. of Kansas, CDF+D0):
przewidywania i wyniki doświadczalne
Xb Results
15.2  4.4
Likelihood Fit Results :
M (DØ) = 5774  11 (stat.)  15 (syst.) MeV -- [1]
M (CDF)= 5792.9  2.4 (stat.)  1.7 (syst.) GeV )
(Theory : 5.793 - 5.814)
[1] PRL 99, 1052001 (2007)
[2] arXiv:0707.0589
– [2]
17.5  4.3
Podsumowanie nowych barionów
• Masy i rozpady +/- jak oczekiwano.
• Dlaczego model kwarków działa tu tak
dobrze?
Zalecenia i perspektywy
• Warto oglądnąć strony dostępne pod „Program” na
stronie ISMD 2007 http://wwwrnc.lbl.gov/ISMD/index.html
• Następne ISMD w Hamburgu (DESY) w dniach
16-20.09.2008 (Hannes Jung + Gösta Gustafson),
a przedtem
• WPCF (Workshop on Particle Correlations and
Femtoscopy) w Krakowie 10-14.09.08 (Andrzej
Białas + KF, G.Miśkowiec etc. w OC, J.Pluta,
K.Zalewski wśród conveners...)