Transcript Content
The Risks of Portfolios of Hedge Funds Drago Indjic Fauchier Partners PRMIA, 14 May 2003, London 1 Speculators • Don’t believe everything you read – Negative media bias – Cliché: “LTCM”, “Soros”, “Courtisans” … = Investor education, academic research El Pais, 24 Feb 2003 2 Early 21c. Risk 250 225 200 175 150 125 HFRI FOF Offshore MSCI 100 Apr-95 Oct-95 Apr-96 Oct-96 Apr-97 Oct-97 Apr-98 Oct-98 Apr-99 Oct-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02 Oct-02 Source: HFR, Pertrac, Fauchier 3 Content • Hedge fund industry • Investment strategies • Investor’s perspective • Data, Transparency and Estimation Risks • Hedge fund risk • Portfolios of Hedge funds (Any HF investors or FoHF in the audience?) 4 Hedged Funds • Unregulated private placements – (e.g.) A pooled investment vehicle that is privately organised, administered by professional investment managers, and not widely available to the public • “Extralegality” (de Soto) => Frontier Creativity – Less restrictive liquidity, borrowing, derivatives … (taxation) – Creative investment strategies – efficient capital utilisation – Perpetual innovation ⇄ inefficiencies • Consider only hedged (off-shore) funds 5 Industry • The most dynamic sector of asset management today – Decreasing sell side research coverage; Higher servicing profitability • Regulators “lagging” – SEC: May 14/15 – “raising bar”? • Sustained growth – Highly creative and talented manager’s end game: “personal” styles – Owner/Manager mentality – Self-Regulation by adapting capacity, liquidity, fees Estimated Hedge Fund Asset Growth and Flow 1990 - 2002 Estimated Number of Hedge Funds (ex FOF) 1990 - 2002 6 5,000 $700,000 4,598 $622,304 4,500 $487,580 $99,436 $456,430 $367,560 $374,770 $400,000 $46,544 $54,847 $300,000 $256,720 $200,000 $167,790 $167,360 $95,720 $100,000 $38,910 $58,370 $36,918 -$1,141 $91,431 Number of Funds $500,000 Number of Funds $536,060 Assets (In $MM) Assets (In $MM) $600,000 $20,353 $4,406 $185,750 3,904 4,000 3,500 3,335 3,102 2,848 3,000 2,564 2,392 2,500 2,006 2,000 1,654 1,500 1,277 $57,407 937 1,000 $14,698 694 530 $27,861 500 $8,463 $0 0 1990 1991 1992 1993 1994 Estimated Assets 2003 1995 1996 Estimated Assets 1997 1998 Asset Flows Asset Flow 1999 2000 2001 2002 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 7 • • Hedge Fund Environment Tass Asset Flows Report™ 4Q2002 3493 total -1337 “dead”= 2156 “live” funds Billions USD Tass HFR 2001 $261 $536 HFR 2002 Industry Report: 4598 funds (exc. FoF) 2002 $310 $622 (AUM most probably underestimated) 8 • • Another Asset Class? Contra: – HF are “alternative investment strategies”: too heterogeneous, dynamic, evolving, with no brands Pro: – Absolute returns paradigm, Ineichen (2002) • Specific liquidity (“mark-to-market”) and drawdown preferences – Very different sources of α, uncorrelated, –ve β, better Ω … ran by non-consensus thinkers in small enterprises 9 • • Investment Strategies Hedge Fund (HF) “Indexes” – Composites of actively managed portfolio returns – Over a dozen commercial indices – Investible? Transparent? Capacity? – No independent verification – Enforcing “relative” rather than “absolute” return viewpoint Evolving strategies – E.g. Quantitative credit arb, macro equilibrium models – Many styles within strategy (inc. different fund of funds styles) – “Strategy drift” detection Estimated Strategy Composition by # of Funds (ex FOF) 2002 Short Selling 0.76% Sector (Total) 6.71% Relative Value Arbitrage 2.77% 10 Convertible Arbitrage 3.70% Convertible Arbitrage 0.48% Distressed Securities 2.74% Regulation D 0.52% Emerging Markets (Total) 5.53% Merger Arbitrage 3.78% Estimated Strategy Composition by AUM 1990 Distressed Securities Emerging Markets (Total) 2.40% 0.36% Equity Hedge 5.28% Short Selling 0.12% Sector (Total) 0.24% Equity Market Neutral 1.68% Relative Value Arbitrage 10.08% Equity Non-Hedge 0.60% Event Driven 3.84% Market Timing 3.65% Merger Arbitrage 0.60% Macro 2.15% Fixed Income (Total) 3.24% FI: MBS 1.37% FI: High Yield 1.14% FI: Diversified 2.56% Equity Hedge 38.52% FI: Convertible Bonds 0.25% FI: Arbitrage 2.78% Event-Driven 7.28% Equity Non-Hedge 7.84% 2003 Equity Market Neutral 5.94% Macro 71.07% Estimated Net Asset Flow by Strategy Q4 2002 11 Estimated Net Asset Flow by Strategy 2002 Assets (in $MM) ($6,000) ($3,000) $0 $3,000 $6,000 Assets (in $MM) $9,000 $12,000 $15,000 ($60,000) ($40,000) ($20,000) $0 Convertible Arbitrage $20,000 $40,000 $60,000 $80,000 $100,000 $120,000 Convertible Arbitrage Distressed Securities Distressed Securities Emerging Markets (Total) Emerging Markets (Total) Equity Hedge Equity Hedge Equity Market Neutral Equity Market Neutral Equity Non-Hedge Equity Non-Hedge Event-Driven Event-Driven Fixed Income: Arbitrage Fixed Income: Arbitrage FI: Convertible Bonds FI: Convertible Bonds Fixed Income: Diversified Fixed Income: Diversified Fixed Income: High Yield Fixed Income: High Yield Fixed Income: MBS FI: Mortgage-Backed Macro Macro Market Timing Market Timing Merger Arbitrage Merger Arbitrage Regulation D Regulation D RVA RVA Sector (Total) Sector (Total) Short Selling Short Selling Fund of Funds Equity Market Neutral: Stat Arb Equity Market Neutral: StatArb Fund of Funds 2003 2002 HFRI Index Risk Return Comparison 2002 HFRI Index Risk Return Comparison 5 Year Annualised (1998 – 2002) 12 25% 12% Short Selling Convertible Arbitrage Reg. D Equity Hedge 20% 15% Lehman Gov/Credit FI: Diversified 10% FI: Arbitrage Convertible Arbitrage Macro Lehman Gov/Credit 9% FI: Diversified Relative Value Arb FI: Mortgage-Backed Macro FI: High Yield Relative Value Arb Emerging Markets (Total) Equity Market Neutral Equity Market Neutral Fund Weighted Comp. Index Fund of Funds Merger Arbitrage 0% 0% 3% 6% 9% 12% 15% 18% 21% Market Timing Statistical Arbitrage -5% Equity Hedge Return (%) Return (%) 5% Distressed Securities Sector (Total) Merger Arbitrage Fund Weighted Comp. Index Event Driven Short Selling Distressed Securities 6% Fund of Funds Equity Non-Hedge FI: Mortgage-Backed Event Driven Equity Non-Hedge Reg. D -10% Statistical Arbitrage Sector (Total) 3% FI: Arbitrage -15% FI: High Yield FI: Convertible Bonds FI: Convertible Bonds -20% Emerging Markets (Total) S&P 500 -25% 0% STD (%) 2003 0% 5% 10% 15% STD (%) 20% 25% 30% 13 AIMA Strategy Definitions • An index family for every commercial data source: too many indices but a lack of definitions • Ad-hoc committee under the under the auspices of AIMA called for “Expressions of interest” in April 2003 • ‘Non-commercial’, coordinated long-term research effort leading to the development of a set of definition "guidelines" • Survey planned during 3Q03 14 Creating Exposure • How? – “DIY”, advisor, specialist? – “Fund of funds” (FoHF) route • Passive: Indexed – Pools of managed accounts – Which “index” and “HF Tracking error”? • Active: Portfolio of funds – “Off the shelf” – Tailor made and managed • Structured – What type of security do you own? – Total costs? 15 • • • • • • FoHF Examples Two hedge funds A Hedge fund Index, S&P 500-hedged Selection of a dozen funds from “platform”, wrapped Five funds, 8 x levered portfolio Single-strategy, multi-manager (levered) Any including a fund that rebates 50% of fee to anyone 16 • Investment Biases Business rather than investment management: – Seeding, incubation, equity stakes – Capacity marketing, fees splits – Selection vintage year • Asset gatherers: – Collecting fees on gross assets? – Layered fees transparency (e.g. structured products) – 2nd level Performance fee – Hurdle, Highwatermark 17 Managed Account “Platforms” • • Collection of HF accounts – a trivial solution? Portfolio construction biases – “Products” or portfolios? – Captive market? – Can “good” funds be included? – Where is manager self-invested? • Should “on going” Due Diligence be outsourced? 18 Data and Modelling • Data: not liquid market prices but performance estimates of “hyperactive” portfolios skilfully managed in different, very personal styles • Problematic valuation: IAFE Hedge Fund Valuation Practice recommendations • Hedge fund strategy modelling – Multifactor models: R2 from 0.1 to 0.9? – Option replication (Naik and Agrawal, 2001) – Calibration: NAV (RiskData) or model exposure data 19 Transparency Debate • No unique answer – “Those people who need it will find managers who will provide it” – “Those managers who won’t give it will be able to find investors who don’t need it” – Greatest fear: hedge fund ruin (default) – Aggregated disclosure – Mutual trust: the “agent” in real-time dialogue • Full Transparency Paradox – Un-actionable without active overlays – Diminishing need for managers if operating “active” overlay? 20 Hedge Fund Exposures Long/Short Equity Report Template Fund Exposure High Low Average Close Long Exposure % Short Exposure % Net Futures % Net options % Gross % Net % Cash % Month end - Industry Sector/Asset type/Credit Exposure Top 5 Sectors Long Short Gross 1 2 3 4 5 Sum Month end - Country Exposure Top 5 Countries Long 1 2 3 4 5 Source: Fauchier Short Gross Net Net Concentration at month end Long portfolio top 5 Names % by Value 1 2 3 4 5 Sum #Long Long Beta Perfomance Attribution - month Month Long Short Futures/Options Currency Short Portfolio top 5 % by Value 1 2 3 4 5 Sum #Short Short Beta Total number of positions Year to date Gross (Y/N) ? Net (Y/N) ? Intra month variation High Daily NAV Fund Equity at month end ($m) Net change ($m) Low Equity 21 Transparency Compliance (2002) 100% 75% 50% 25% 0% Long / Short Sector/Asset Country Reported Source: Fauchier Top 10 #positions Not Reported n/a Attribution stdev(NAV) 22 Estimation Risk • Taboo topic: non-asymptotical statistics, very short and noisy data samples • Volatility and VaR – Figlewski (2003) • Portfolio - Kempf (2002) The equal weighting is theoretically optimal solution when data and forecasts are not reliable Small sample bias 23 • Estimate correlation: n=12 data points: “ρ=0” ↔ ρ∊[-0.3, 0.3] (85%) Estimated Correlations for Zero Correlation Data Correlation Confidence Intervals Correlation Confidence Intervals 95% confidence level 95% confidence level 0.5 1.0 +/-0.5 0.8 -0.2 am pl es 0.0 n Confidence Interval 12 n= 0.2 nu m be ro fs Correlation Confidence Interval 0.0 -0.5 +/-0.4 0.4 5 =2 n= 50 -0.4 -0.6 number of samples +/-0.3 n=12 n=25 +/-0.2 n=50 +/-0.1 -0.8 +/-0.0 -1.0 Estimated correlation 0.6 0 20 40 60 # months 80 100 120 -0.7 -0.2 0.3 Estimated Correlation 0.8 “secretary problem” - but fund may be already closed corr=-0.7 corr=-0.2 corr=0.3 corr=0.8 24 The table shows the correlation between; (i) FPAM1 and certain funds contained in FPAM1 (where sufficient data is available) (ii) the funds contained in FPAM1 with each other (iii) FPAM1 and various indices (iv) the funds and various indices. Strategy ID Correlation Matrix FPAM 1 CORRELATION MATRIX 1 April 2001 to 31 March2001 2003to 31 March 2003 1 April M M M ELB ELB ELB EHH EHH EHH EHL EHL ESB SC END END MS MS MS MS FRI Strategy ID Fund ID FPAM 1 869 342 1079 91 628 1481 912 1102 240 951 267 970 1019 1385 354 54 293 639 226 1011 M M M ELB ELB ELB EHH EHH EHH EHL EHL ESB SC END END MS MS MS MS FRI 869 342 1079 91 628 1481 912 1102 240 951 267 970 1019 1385 354 54 293 639 226 1011 -0.02 0.19 0.14 0.43 0.55 0.25 0.25 0.13 0.60 0.65 0.57 0.00 0.61 0.67 0.11 0.45 0.45 0.24 0.58 -0.03 1.00 -0.14 0.45 0.21 0.01 -0.30 0.32 -0.16 -0.18 -0.39 0.35 0.70 -0.45 0.10 0.48 -0.51 -0.42 -0.31 -0.62 -0.34 -0.14 1.00 0.39 -0.20 -0.09 0.29 -0.07 -0.07 0.11 0.17 -0.12 -0.21 0.31 0.17 -0.06 0.38 0.16 0.16 0.27 0.14 0.45 0.39 1.00 0.26 0.24 0.03 0.27 -0.20 -0.16 0.01 0.19 0.44 -0.18 0.20 0.32 -0.24 -0.28 -0.03 -0.21 0.13 0.21 -0.20 0.26 1.00 0.42 -0.09 0.57 0.23 0.45 0.09 0.37 0.49 -0.12 0.08 0.54 -0.40 -0.13 -0.38 -0.13 -0.20 0.01 -0.09 0.24 0.42 1.00 0.18 0.12 -0.01 0.40 0.60 0.47 0.02 0.30 0.67 0.14 0.05 0.20 0.14 0.27 0.14 -0.30 0.29 0.03 -0.09 0.18 1.00 -0.44 -0.04 0.07 0.41 0.21 -0.39 0.14 0.20 -0.45 0.18 -0.08 0.25 0.17 0.33 0.32 -0.07 0.27 0.57 0.12 -0.44 1.00 -0.00 0.20 -0.21 0.08 0.74 -0.17 -0.05 0.77 -0.33 0.07 -0.51 -0.13 -0.47 -0.16 -0.07 -0.20 0.23 -0.01 -0.04 -0.00 1.00 0.33 0.19 -0.12 -0.03 0.15 -0.04 0.19 0.05 0.26 -0.29 0.12 -0.29 -0.18 0.11 -0.16 0.45 0.40 0.07 0.20 0.33 1.00 0.50 0.29 0.05 0.29 0.36 0.20 0.15 0.33 0.07 0.36 -0.14 -0.39 0.17 0.01 0.09 0.60 0.41 -0.21 0.19 0.50 1.00 0.49 -0.37 0.52 0.59 -0.19 0.46 0.41 0.40 0.56 0.05 0.35 -0.12 0.19 0.37 0.47 0.21 0.08 -0.12 0.29 0.49 1.00 0.25 0.07 0.59 0.16 -0.07 -0.14 0.24 0.03 -0.07 0.70 -0.21 0.44 0.49 0.02 -0.39 0.74 -0.03 0.05 -0.37 0.25 1.00 -0.53 -0.07 0.78 -0.69 -0.25 -0.51 -0.58 -0.48 -0.45 0.31 -0.18 -0.12 0.30 0.14 -0.17 0.15 0.29 0.52 0.07 -0.53 1.00 0.45 -0.27 0.81 0.63 0.52 0.86 0.20 0.10 0.17 0.20 0.08 0.67 0.20 -0.05 -0.04 0.36 0.59 0.59 -0.07 0.45 1.00 -0.16 0.38 0.34 0.46 0.40 0.21 0.48 -0.06 0.32 0.54 0.14 -0.45 0.77 0.19 0.20 -0.19 0.16 0.78 -0.27 -0.16 1.00 -0.53 -0.02 -0.58 -0.28 -0.50 -0.51 0.38 -0.24 -0.40 0.05 0.18 -0.33 0.05 0.15 0.46 -0.07 -0.69 0.81 0.38 -0.53 1.00 0.54 0.62 0.85 0.31 -0.42 0.16 -0.28 -0.13 0.20 -0.08 0.07 0.26 0.33 0.41 -0.14 -0.25 0.63 0.34 -0.02 0.54 1.00 0.21 0.64 -0.05 -0.31 0.16 -0.03 -0.38 0.14 0.25 -0.51 -0.29 0.07 0.40 0.24 -0.51 0.52 0.46 -0.58 0.62 0.21 1.00 0.57 0.43 -0.62 0.27 -0.21 -0.13 0.27 0.17 -0.13 0.12 0.36 0.56 0.03 -0.58 0.86 0.40 -0.28 0.85 0.64 0.57 1.00 0.36 -0.34 0.14 0.13 -0.20 0.14 0.33 -0.47 -0.29 -0.14 0.05 -0.07 -0.48 0.20 0.21 -0.50 0.31 -0.05 0.43 0.36 1.00 0.30 -0.14 0.03 -0.08 -0.65 0.56 0.06 0.06 -0.13 0.07 -0.35 0.32 0.09 -0.52 0.18 0.23 -0.02 0.12 0.04 0.33 -0.63 0.01 -0.82 0.39 0.01 -0.03 -0.26 0.18 -0.13 0.01 0.25 0.33 -0.15 0.18 -0.20 0.14 -0.07 -0.92 0.52 0.22 0.38 -0.26 0.27 0.11 0.09 -0.01 -0.84 0.40 0.15 0.55 -0.21 0.15 0.13 -0.01 0.13 0.58 -0.09 0.22 0.46 -0.30 0.02 0.62 -0.39 Estimation Error <10% >20% <20% <10% Correlation band Positive >0.66 <-0.42 Negative <-0.66 Correlation: Average correlation with all funds MSCI The World Index - Gross SSB WGBI 5+ year sector in USD Notes: 1. Assuming 90% confidence level and 10% error monthly data points, correlations greater than +/-0.42 (0.66) are eestimated with less than 20% (10%) error. 2. The strategies formerly known as Restructuring (R) and Credit Arbitrage (CA) have been re-classified as Specialist Credit (SC) and Fixed Income (FI) respectively. 3. The correlation matrix is generated from 24 data points. 4. A blank cell denotes that no meaningful correlation exists for the period of the report. Source: Fauchier Correlation 0 25 Weekly vs Monthly Data View Difference between Weekly and Monthly Correlation Values BoyerAllanPacific Caduceus CanyonCSFB BoyerAllanPacific 0 -0.24 -0.21 -0.04 Caduceus -0.24 0 -0.27 -0.15 Canyon -0.21 -0.27 0 -0.44 CSFB -0.04 -0.15 -0.44 0 Daedalus 0.11 0.26 -0.09 -0.15 DoubleBlackDiamond 0.21 0.33 0.16 0.10 Egerton -0.34 -0.11 -0.24 -0.31 FRI -0.01 0.02 0.17 0.17 Gruss -0.25 -0.35 -0.08 -0.23 JGDYork -0.10 -0.07 -0.27 -0.08 LansdowneEuropean -0.18 0.06 -0.05 0.16 PerryEuropean -0.05 0.13 -0.13 0.11 PerryPartners-0.26 -0.06 -0.25 -0.33 Raptor -0.20 -0.29 -0.12 -0.04 Seminole -0.14 0.02 -0.04 -0.14 SRGlobal -0.27 -0.09 0.06 0.09 StAlbans -0.10 0.05 -0.14 -0.42 StandardPacific -0.19 0.16 0.11 0.12 TTAsia -0.34 -0.34 -0.04 0.05 WPG -0.35 -0.34 -0.04 -0.07 Daedalus DoubleBlackDiamond EgertonFRI Gruss 0.11 0.21 -0.34 -0.01 -0.25 0.26 0.33 -0.11 0.02 -0.35 -0.09 0.16 -0.24 0.17 -0.08 -0.15 0.10 -0.31 0.17 -0.23 0 -0.37 -0.16 -0.51 0.17 -0.37 0 0.30 -0.14 0.56 -0.16 0.30 0 -0.01 -0.16 -0.51 -0.14 -0.01 0 0.00 0.17 0.56 -0.16 0.00 0 -0.16 -0.08 -0.13 -0.02 -0.23 -0.11 0.21 -0.08 -0.04 -0.03 -0.74 -0.13 -0.19 0.17 0.14 -0.45 -0.06 -0.29 0.22 -0.02 0.16 0.31 0.10 -0.20 -0.09 0.03 0.21 -0.02 0.02 -0.35 0.33 0.10 0.07 -0.03 0.04 -0.35 -0.12 -0.10 -0.25 -0.07 -0.03 0.14 -0.02 -0.18 0.19 -0.21 0.22 0.02 -0.09 -0.16 0.03 0.24 0.00 -0.30 -0.08 JGDYork LansdowneEuropean PerryEuropean PerryPartners Raptor Seminole SRGlobal StAlbans StandardPacific TTAsiaWPG -0.10 -0.18 -0.05 -0.26 -0.20 -0.14 -0.27 -0.10 -0.19 -0.34 -0.35 -0.07 0.06 0.13 -0.06 -0.29 0.02 -0.09 0.05 0.16 -0.34 -0.34 -0.27 -0.05 -0.13 -0.25 -0.12 -0.04 0.06 -0.14 0.11 -0.04 -0.04 -0.08 0.16 0.11 -0.33 -0.04 -0.14 0.09 -0.42 0.12 0.05 -0.07 -0.16 -0.11 -0.74 -0.45 0.16 0.03 0.33 -0.35 -0.03 -0.21 0.03 -0.08 0.21 -0.13 -0.06 0.31 0.21 0.10 -0.12 0.14 0.22 0.24 -0.13 -0.08 -0.19 -0.29 0.10 -0.02 0.07 -0.10 -0.02 0.02 0.00 -0.02 -0.04 0.17 0.22 -0.20 0.02 -0.03 -0.25 -0.18 -0.09 -0.30 -0.23 -0.03 0.14 -0.02 -0.09 -0.35 0.04 -0.07 0.19 -0.16 -0.08 0 -0.05 -0.01 -0.18 0.13 -0.33 0.00 -0.18 0.17 0.17 -0.41 -0.05 0 0.05 -0.08 -0.01 -0.17 -0.37 -0.18 -0.19 0.06 -0.51 -0.01 0.05 0 -0.12 0.49 0.03 0.08 -0.56 0.18 -0.02 -0.14 -0.18 -0.08 -0.12 0 0.27 -0.06 0.08 -0.28 0.05 0.05 -0.05 0.13 -0.01 0.49 0.27 0 0.13 -0.20 0.12 -0.12 -0.18 -0.08 -0.33 -0.17 0.03 -0.06 0.13 0 -0.15 -0.14 0.19 -0.05 -0.30 0.00 -0.37 0.08 0.08 -0.20 -0.15 0 0.33 -0.30 -0.21 -0.34 -0.18 -0.18 -0.56 -0.28 0.12 -0.14 0.33 0 -0.11 0.30 0.14 0.17 -0.19 0.18 0.05 -0.12 0.19 -0.30 -0.11 0 0.04 0.10 0.17 0.06 -0.02 0.05 -0.18 -0.05 -0.21 0.30 0.04 0 -0.15 -0.41 -0.51 -0.14 -0.05 -0.08 -0.30 -0.34 0.14 0.10 -0.15 0 From Feb 2001 to Jan 2003 (24 monthly or 108 weekly data values) Surprising differences in certain fund correlations pairs Source: Fauchier Weekly HF “Indexes” 26 60 30 50 40 20 30 20 10 10 0 0 -0.04 -0.02 0.00 M 0.02 0.04 -0.03 -0.02 -0.01 0.00 EHL 0.01 0.02 Equally weighted index of weekly returns: non-normality Source: Fauchier 0.03 27 Omega Ratio Keating and Shadwick (2002) 28 Hedge Fund Risk • HF are SME (~7 people => no IT, client service …) – Can portfolio manager run (grow) a small business? – “Disgraceful aging” • Total Hedge Fund Risk = – Market Risk + Operational Risk – Operational Risk >> Market Risk – Principal/Agency Problem • Balance “Qualitative and Quantitative” Risks 29 $9,000 $8,000 The Real Risk $80.0 $70.0 $7,000 $60.0 $6,000 $5,000 $4,000 $3,000 $50.0 $40.0 $30.0 $2,000 $20.0 $1,000 $0 ($1,000) $10.0 $0.0 30 Risk Management • Primary (individual hedge fund level): – Many market risks are (most often) hedged – Balance sheet dynamics: leverage and hedge skills – Kept in check by Prime Broker margin policy • Secondary (portfolio of funds level): – Risk measurement + portfolio management – Operational risk management 31 • • • Market Risks Mandatory: Prime brokers – Are VaR and margin policy private information not to be disclosed (timely) to (all) investors? Optional: Third party “Risk aggregators” – HF → TTP → Investor – New generation fund administrators? Voluntary: Customised risk reporting – IAFE IRC and AIMA: Strategy-specific templates 32 Operational Risks (1) • Age and stability – Immature business models – Incentives, succession planning • Capacity – “Chicken & Egg” capacity games: • Day 1 fund closures, secondary market – Big isn’t beautiful: median AUM $40m – “Know your client”: max. two dozen investors • Liquidity – Lockups, penalties, gates, suspended and forced redemption rights 33 • • • Operational Risks (2) Organisational Structure – Legal structure – Performance fee models Counterparties – Fund administration, Audit, Prime Broker Manager Utility: “Path-Dependant” – Risk aversion = f ( ΔAUM, Losing streak, YTD, Wealth…) 34 • • • Funds of Hedge Funds FoHF A ≠ FoHF B – % own (or owned) funds, %funds of funds, % multistrategy funds … – Liquidity, costs (fee sources) Portfolio Analysis – Performance Attribution: Manager selection vs Strategy allocation – Turnover (usually low), ROCE – Style analysis Monitoring – In-situ: business and operational risk 35 • Portfolio Construction “One size doesn’t fit all” – Single-strategy, multi-manager: mitigate decision making? – “All weather” – Tailor-made • Levered or not? • • “Optimised” or not? Avoid behavioural biases 36 Portfolio Estimation Risk • Kempf (2002): Optimal portfolios for data length T, market inhomogeneity τ, identical prior mean. Case τ =0 τ→∞ T=0 Minimum variance Equally weighted T→∞ Minimum variance Two-step Markowitz • Comment: funds of hedge funds are in T→0/τ→∞ 37 Portfolio Construction 0.02 0.03 0.04 0.05 Distribution of Portf olio Weights 207 515 117 215 309 38 Operational Risk Optimality • Constrained optimisation – Asymmetric calendar trading constraints (illiquidity) – Inherent slippage • Not mean-variance but scheduling and constraint programming • Monitoring Costs: Communication density – #meetings/funds/year/analyst(s) 39 Calendar Liquidity Constraints M/M+30/15 March 03 May 03 July 03 Sept 03 Nov 03 Jan 04 March 04 March 03 May 03 July 03 Sept 03 Nov 03 Jan 04 March 04 March 03 May 03 July 03 Sept 03 Nov 03 Jan 04 March 04 Jan 03 M/M+60/20 Jan 03 2/Q+60 Jan 03 Source: Fauchier 40 Manager Research and Monitoring Number of meetings Total number of meetings Managers' Office Fauchier Partners 1200 100 Seminars 90 1000 80 800 60 600 50 40 400 30 20 200 10 0 0 1 -0 n Ja pr A Source: Fauchier 01 1 l-0 u J O 1 -0 ct 2 -0 n Ja A pr 02 2 l-0 u J O 2 -0 ct Cumulative Per Month 70 41 Conclusion • Balance true risks and costs – Attention to vested business interests and incentives (are we all “eating our own cooking”?) – Quantitative, but also confident • Product divergence – “Optimal” transparency – Commoditisation vs customisation 42 Bibliography - Introduction • AIMA (2002) A Guide to Fund of Hedge Funds Management and Investment • AIMA (2003) Hedge Fund Strategy Definition Standardisation • Inechien, A. (2002) Absolute Returns, Wiley • L’ Habitant, F.-S. (2002) Hedge Funds: Myths and Limits, Wiley • Rahl, L. (2003) Hedge Fund Risk Transparency, Risk Books 43 Bibliography - Research • Figlewski, S. (2003) Assessing the Risk in Risk Assessments, IAFE/ PRMIA Seminar, April 23rd, NYC • Kempf, A., Memmel, C. (2002) On the Estimation of the Global Minimum Variance Portfolio, Discussion Paper 2002-2, Uni. Koeln • Keating, C., Shadwick, W. (2002) “Omega: A Universal Performance Measure” Journal of Performance Measurement, Spring 2002 • Lo, A. (2002) Risk Management for Hedge Funds: Introduction and Overview, AIMR • Naik, N., Agrawal, V. (2001) Performance Evaluation of Hedge Funds with Option-based and Buy-and-Hold Strategies, LBS