The Accelerating Universe
Download
Report
Transcript The Accelerating Universe
Open page
L. Perivolaropoulos
http://leandros.physics.uoi.gr
Department of Physics
University of Ioannina
Talk Made in Corfu-Greece
Summer 2006
Dark Energy Probes include
-SnIa (Gold sample and SNLS),
-CMB shift parameter (WMAP 3-year),
-Baryon Acoustic Oscillation Peak in LSS surveys,
-Cluster gas mass fraction,
-Linear growth rate from 2dF (z=0.15)
Some of these probes mildly favor
an evolving w(z) crossing the phantom divide w=-1 over ΛCDM
Minimally Coupled Quintessence is inconsistent with such crossing
Scalar Tensor Quintessence is consistent with w=-1 crossing
Boisseau, Esposito-Farese, Polarski, Starobinsky 2000
LP 2005
Extended Gravity Theories (DGP, Scalar Tensor etc) predict unique
signatures in the perturbations growth rate
m
Friedmann Equation
Flat
8aG
8 G
H
H aa m a maa
3
3a
2
22
Directly
Observable
No
Yes
m
3
~ a t
V
Not
Consistent
Directly Dark Energy
Observable (Inferred)
dL
5 log empty
dL
dL
5 log empty
dL
z~0.5: Acceleration starts
from Spergel et. al. 2006
157 SnIa
a
1 d d L ( z)
z H z
c dz 1 z
Q: What causes this accelerating expansion? a
Flat
1
w
Friedman eqn I:
pX
a
4 G
m 1 3w
a
3
w
1
3
Negative
a
d
3
a
pX d
p X w
~ e
a
3
1
da '
(1 w ( a '))
a'
3
Pressure
~ a
31 w
Friedman eqn II:
2
H ( z)
H
0 m
2
0
2
a
a2
0m
3
8 G
a0
0m
3
a
1 z
0 m
0.2 0.3
crit
3
X
z
crit
a
(from large scale structure observations)
0m k 1
2
a
3
2
2
2
H ( z ) 2 H 0 0 m 1 z k 1 z
a
L
d L ( z )obs
2.5 log10
m( z ) M 25 5 log10
Mpc
l ( z)
d L ( z )th
c 1 z
H0
m
N
2 m ,
i 1
sin
1
m
H 0 dz
1
0 H z ; 0 m ,
z
5 log10 d L ( zi )obs 5 log d L ( zi ; m , )th
i2
2
min
SNLS
Truncated
Gold
Gold
Sample
S. Nesseris, L.P.
Phys. Rev. D72:123519, 2005
astro-ph/0511040
z
Physical Model H z; a1 , a2 ,..., an
dz
0
ansatz
z
dz
Data: d Lobs zi
th
0
d L z; a1 , a2 ,..., an
2 2
min
H z; a1 , a2 ,..., an
d L z; a1 , a2 ,..., an
Data: d Lobs zi
a1 , a2 ,..., an
2
2 min
w z; a1 , a2 ,..., an
2
min
a1 , a2 ,..., an
( z ) a0 1 z
31 w
Constant w
w( z) w0 w1 z
w( z ) w0 w1
w( z )
i
Weller-Albrecht 2002
z
1 z
( z ) a0 a1 1 z a2 1 z
Chevalier-Polarski 2001, Linder 2003
2
wi
z zi zi 1 z
2
( z) a0 a1 cos a2 z a3
w( z )
2
d ln H
1 z
1
pX ( z)
3
dz
w z
2
X ( z)
3
H0
1
0 m 1 z
H
z zT
w w w w
tanh
2
2
z
Sahni et. al. 2003
Huterer-Cooray 2004
Nesseris-LP 2004
Pogosian et. al. 2005
• All best fit parameterizations cross the phantom divide at z~0.25
• The parametrization with the best χ2 is oscillating
m 0.3
CP L
2
2
CDM 177.1
min
OA 171.7 min
Lazkoz, Nesseris, LP 2005
Espana-Bonet, Ruiz-Lapuente
astro-ph/0503210
Wang, Lovelace 2001
Huterer, Starkman 2003
Saini 2003
Wang, Tegmark 2005
Espana-Bonet, Ruiz-Lapuente 2005
Q: Do other SnIa data confirm this trend?
w( z ) w0 w1
z
1 z
SNLS (115 points z<1)
m 0.24
Trunc. Gold (140 points, z<1)
Full Gold (157 points, z<1.7)
SNLS data show no trend for crossing the phantom divide w=-1!
S. Nesseris, L.P.
Phys. Rev. D72:123519, 2005
astro-ph/0511040
R
Definition:
l1TT ~
l1TT ~
1
1
l1
TT
l1
TT
TT
1
TT
1
d A zrec
d A zrec
rs zrec
rs zrec
rs z rec d A z rec
rs zrec d A zrec
rs arec
1
: Peak Location of considered model or data
d A arec
1
: Peak Location of Corresponding SCDM model:
1
m 1, b h2 b h2 , m h2 m h2
rs
arec
0
cs a da arec cs a da r h2
a
a 2 H a 0 H 0 1/m 2 m h 2
d A zrec arec
1
arec
c da
c arec
2
a H a
zrec
0
1
2
rs
arec
0
cs a da arec cs a da r h2
a
a 2 H a 0
H 0 m h 2
1
2
5000
dz
H0 E z
m 0.27, b 0.043, bh2 0.022, mh2 0.14
m 1, b 0.157, bh2 0.022, mh2 0.14
R
1
1
2 c arec
1 r 2 r arec 2
H 0
rs zrec d A zrec
rs zrec d A zrec
2
m
zrec
0
l l 1 Cl TT 2
d A zrec
K ^2
3000
1 12 a 12 l1
r
r
rec
l1TT
dz '
E z '
2000
1500
TT
1000
l1TT 220
5
10
50
mult. number l
100
l '1TT 246
500
1000
5000
m 0.27, b 0.043, b h2 0.022, mh2 0.14
m 1, b 0.157, b h2 0.022, mh2 0.14
l l 1 Cl TT 2
K ^2
3000
R
l '1TT 246
1.123
l1TT 220
2
m
zrec
0
1 12 a 12
r
r
rec
dz '
E z '
0.965
2000
R ' m
zrec
dz '
E z ' 1.7
0
1500
Q: Does R contain all the info
about H(z) in the CMB Spectrum?
1000
l1TT 220 0.8
5
10
50
mult. number l
100
l '1TT 246
500
1000
R 1.7, b h2 0.022, mh2 0.142
m 0.27, w0 0.8, w1 0.0
5000
m 0.27, w0 0.9, w1 0.3
l l 1 Cl TT 2
K ^2
m 0.27, w0 0.8, w1 0.0
m 0.15, w0 1.32, w1 0.0
3000
m 0.50, w0 0.3, w1 0.02
2000
w( z ) w0 w1
1500
z
1 z
1
3 wunaffected
1
1
CMB Spectrum
practically
3
31
w0 w1
1 z
H ( z ) H 0 m 1 z 1 0 m 1 z
e
2
2
0
1000
All the useful H(z) related info coming from
the CMB spectrum is contained in R.
5
10
50
mult. number l
100
500
1000
2
d ln H
1 z
1
pDE ( z )
3
dz
w z
2
DE ( z )
3
H0
1
0 m 1 z
H
1.5
1.5
1.5
Gold dataset
Riess -et. al. (2004)
1
w(z )
SNLS dataset
Astier -et. al. (2005)
1
0.5
0.5
0.5
0
0
0
0.5
0.5
0.5
1
1
1.5
1.5
0m 0.2
1
w( z ) w0 w1
z
1 z
1.5
0
0.25
0.5
0.75
1
1.25
1.5
1.75
0
z
0.25
0.5
0.75
1
1.25
1.5
0
1.75
Gold dataset
Riess -et. al. (2004)
SNLS dataset
Astier -et. al. (2005)
0
R
0.5
0.5
m , w1 , w2 1.70
0.032
1
Wang, Mukherjee 2006
0.5
0.75
0.5
2
2
2
CMB
m , w1 , w2 0BAO
m , w1 , w2 cl2 w1 , w2 LSS
w1 , w2 0
0m 0.3
Minimize:
0 m 0.2
0.25
1
Other data:
CMB, BAO, LSS, Clusters
1
0.5
0
S. Nesseris,
L.P.
in prep.
1.25
1.5
1.75
0.75
1.5
1
0.5
1.5
0.5
z
1.5
w(z )
0.25
z
1.5
1
Other data:
Other BAO,
data: LSS, Clusters
CMB,
CMB, BAO, LSS, Clusters
1
1
1.25
z
1.5
1.75
2
A
1
m , w1 , w2 0.469
2
0.017 2
26
i 1
1.5
f
zi ; w1 , w2 f gas i
SCDM0.5
gas
0.5
0.75
1
1.25
z
1.5
1.75
2
0.112
1
aD' (a)
g z 1 0.15
0.51 0.11
a
D( a )
Eisenstein et. al. 2005
0.25
g z 0.15; w , w 0.51
1
2
gas
i
1
1.5
0
2
0
0.25
0.5
Allen et. al. 2004
0.75
1
z
1.25
1.5
2dF:Verde
et. al.
1.75
MNRAS 2002
2
CMB BAO Clusters LSS m 0.2
0m 0.2
CMB BAO Clusters LSS m 0.3
0m 0.3
What theory produces crossing of the w=-1?
1 2
+: Quintessence
L V
2
-: Phantom
Quint 1
1 2
V
p
0
w 2
1
1 2 V Phant < 1
2
To cross the w=-1 line the kinetic energy term
must change sign
(impossible for single phantom or quintessence field)
Generalization for k-essence:
Non-minimal Coupling
1
8 Geff
1
F , U Φ
F 1
, p
1
1 2
H
m U 3HF
3F
2
1
2
H
p
F HF
m
m
2F
2
L.P. astro-ph/0504582, JCAP 0510:001,2005, S. Nesseris, L.P. astro-ph/0602053, Phys.Rev.D73:103511,2006
JCAP 0511:010,2005
F(Φ)
U(Φ)
Minimum: Generic feature
Φ
Φ
Growth Factor:
Growth Factor Evolution
(Linear-Fourier Space):
a
a
m
a, D a
a0 1
3 H ' a
3 0 m
D' k , a
D' ' k , a
f k , a Dk , a 0
2
5
a
H
a
2
a H a
D(a) a
General Relativity:
a0
f (k , a) 1 D(k , a) D(a)
Koyama and Maartens (2006)
DGP:
Scalar Tensor:
Modified Poisson:
f (k , a) 1
1
3 a
1
,
f (k, a) G(a) G0 1 1 a
f (k , a ) 1
H (a) H '(a)a
1
H 0rc
3H (a)
Boisseau, Esposito-Farese,
Polarski Staroninski (2000)
Uzan (2006)
1
kr
1 s
a
2
Sealfon et. al. (2004)
1
Flat Matter Only
0.9
ΛCDM (SnIa best fit, Ωm=0.26)
0.8
ga
g a
aD '(a)
D(a )
Scalar Tensor (α=-0.5, Ωm=0.26)
0.7
DGP
SnIa best fit
+
Flat Constraint
0.6
1
aD' (a)
g z 1 0.15
0.51 0.11
a
D( a )
Verde et. al.
MNRAS 2002
Hawkins et. al.
MNRAS 2003
0.5
0.4
0
0.2
0.6
0.4
a
0.8
1
• Interesting probes of the dark energy evolution include:
- SnIa (Gold sample, SNLS)
- CMB shift parameter
- Baryon Acoustic Oscillations (BAO) Peak of LSS correlation (z=0.35)
- Clusters X-ray gas mass fraction
- Growth rate of perturbations at z=0.15 (from 2dFGRS)
• All recent data indicate that w(z) is close to -1.
Thus w(z) may be crossing the w=-1 line.
• Minimally Coupled Scalar predicts no crossing of w=-1 line
• Scalar Tensor Theories are consistent with crossing of w=-1
• Extended Gravity Theories (DGP, Scalar Tensor etc) predict unique
signatures in the growth rate of cosmological perturbations
F
G r
0
G0
F r
SnIa peak luminosity:
SnIa Absolute Magnitude Evolution:
SnIa Apparent Magnitude:
with:
Parametrizations:
1
m 0.27, w0 0.8, w1 0.0
m 0.27, w0 0.9, w1 0.3
0.8
Models degenerate in ISW are also
degenerate in linear growth factor.
m 0.27, w0 0.8, w1 0.0
m 0.15, w0 1.32, w1 0.0
0.6
Da
m 0.50, w0 0.3, w1 0.02
w( z ) w0 w1
0.4
z
1 z
a
m
a
a
,
D
a
Growth Factor:
a0 1
3 H 'a
3 0 m
D '' a
D a 0
D ' a
2
5
a
H
a
2
a H a
0.2
D(a) a
0
0.2
0.4
0.6
a
0.8
a0
1
Hubble free luminosity Distance
Apparent Magnitude:
χ2 depends on M:
Expandin M :
Minimize:
where
Gold Sample
SNLS
Uniform Analysis of Data
Uniform Analysis of Data
(light curves) by one Group (light curves) by one Group
Combination of Data from
Various Instruments
Use of a single ground based
instrument (megaprime of
CFH 3.6m telescope)
Redshift Range 0<z<1.7
Redshift Range 0<z<1
157 datapoints
73 new datapoints
i
Data d L zi
d Ls z , d L zi K z , zi ,
K z , z ,
1 d d ( z , )
H z ,
c dz 1 z
d
dz
s
s
L
1
smoothing scale
d ln H z ,
2
1 z
1
d
dz
dz
ws z , 3
2
3
H0
1
0 m 1 z
H
s
Wang, Lovelace 2001
Huterer, Starkman 2003
Saini 2003
Wang, Tegmark 2005
Espana-Bonet, Ruiz-Lapuente 2005
Fisher Matrix:
1 2 2 w1 , w2
Aij w1 , w2 Aij w1 , w2 Aij1 w1 , w2 Cij w1 , w1
2 wi w j
Parameter Estimation:
wi wi Cii w1 , w2
w(z) plot with error regions:
z
1 z
w( z ) w0 w1
w z
w1 ( z ) w z
i , j 1 wi
w
2
i , j wi , j
Covariance Matrix
w z
w j w
i , j wi , j
Cij w1 , w2
from Max Tegmark's home page
Effective Scale:
1/ 3
2
c z z dz
1/
3
z z
2
DV z x x
c
H
z
H
z
0
Correlation function:
z
, z H
r rpeak
LCDM
DV z 0.35
rpeak rsound
DVLCDM z 0.35
x AB c
z
H z
z dz
x CD x c
H
z
0
DV z 0.35 1370 64 Mpc
DV z 0.35 m H 02
A
0.469 0.017
0.35 c
w( z ) w0 w1
Assume:
z
1 z
2
2
Minimize: CMB
m , w1, w2 BAO
m , w1, w2
1.5
R m , w1, w2 1.70
0.032
A m , w1, w2 4.69
0.172
1.5
m 0.25
1
m 0.3
1
0.5
0.5
wz
0
0
0.5
0.5
1
1
1.5
1.5
wz
2
0
0.25
0.5
0.75
1
z
1.25
1.5
1.75
0
0.25
0.5
0.75
1
z
1.25
1.5
1.75
2
Define Cluster Baryon Gas Mass fraction:
f gas
M b gas
M tot
b
m
Global Mass Fraction vs Baryon Gas Mass fraction:
M b gas
b
Mb
b
1
1 f gas
m M tot
M tot
Isothermal Gas Model:
5
1
r
... M b gas R B Te , c , rc3/ 2 LX R 2 C Te ,c , , l X , z d A z 2
R
c d A z
4 d L z l X R
2
Cluster
Hydrostatic Equilibrium: ... Mtot R D Te d A z
O
c
Cluster Baryon Gas Mass fraction:
f gas
M gas R
M tot R
3
3
C
d A z 2 Q c , , Te ... d A z 2
D
Observed
Connect to Global Mass fraction:
3
b b 1 f gas 1 Qi d A zi 2
m
SCDM
f gas
zi
SCDM
SCDM
f
z
Q
d
zi Qi SCDM
gas
i
i
A
Define:
dA
zi
f gas
3
1 b
Qi d A zi 2
1 m
SCDM
b b d ASCDM zi
SCDM
f gas zi
1 m d A zi
Data
LCDM
3
2
w( z ) w0 w1
Assume:
z
1 z
26
Minimize:
cl2 w1 , w2
f
SCDM
gas
i 1
zi ; w1 , w2 f gas i
2
gas
i
1
1
m 0.25
0
wz
2
1
1
2
2
wz
3
3
4
4
5
5
6
6
0
0.25 0.5 0.75
1
1.25 1.5 1.75
z
m 0.3
0
0
0.25 0.5 0.75
1
1.25 1.5 1.75
z
1.5
1.5
1
1
0.5
wz
CMB BAO Clusters m 0.25
CMB BAO m 0.25
2
CMB
0.5
wz
2
BAO
0
0
0.5
0.5
1
1
1.5
1.5
0
0.25
0.5
0.75
1
z
1.25
1.5
1.75
2
2
CMB
BAO
cl2
0
0.25
0.5
0.75
1
z
1.25
1.5
1.75
Growth Factor:
Growth Factor Evolution
(Linear-Fourier Space):
a
a
m
a, D a
a0 1
3 H ' a
3 0 m
D' k , a
D' ' k , a
f k , a Dk , a 0
2
5
a
H
a
2
a H a
D(a) a
General Relativity:
f (k , a) 1 D(k , a) D(a)
a0
2
w( z ) w0 w1
z
1 z
m 0.25, w1 0.8, w2 0.0
1.75
m 0.25, w1 0.9, w2 0.3
m 0.25, w1 1.0, w2 0.59
1.5
m 0.25, w1 3, w2 0.0
aD '(a)
1.25
ga
g a
D(a )
m 0.25, w1 0.5, w2 0.0
1
aD' (a)
g z 1 0.15
0.51 0.11
a
D( a )
Verde et. al.
MNRAS 2002
Hawkins et. al.
MNRAS 2003
1
0.75
0.5
0.25
0.2
0.4
0.6
a
0.8
1
w( z ) w0 w1
Assume:
2
LSS
w1, w2
Minimize:
g z 0.15; w , w 0.51
1
0.112
1.5
1
1
CMB BAO m 0.25
2
CMB
2
2
2
CMB
BAO
LSS
0
0.5
0.5
1
1
1.5
1.5
0.25
0.5
0.75
CMB BAO LSS m 0.25
0.5
2
BAO
0
0
2
2
1.5
0.5
wz
z
1 z
1
z
1.25
1.5
1.75
0
0.25
0.5
0.75
1
1.25
1.5
1.75
'
d
dz
positive energy of gravitons
For U(z)=0 there is no acceptable F(z)>0 in 0<z<2 consistent with
the H(z) obtained even from a flat LCDM model.
1
0.75
0.5
F
0.25
0
0.25
0.5
0.75
0
0.2
0.4
0.6
z
0.8
1
SNLS
Truncated
Gold
Full
Gold
S. Nesseris, L.P.
Phys. Rev. D72:123519, 2005
astro-ph/0511040
Minimize:
N
2 m ,
i 1
5 log10 d L ( zi )obs 5 log d L ( zi ; m , )th
i2
2
Fisher Matrix:
1 2 2 w1 , w2
Aij w1 , w2 Aij w1 , w2 Aij1 w1 , w2 Cij w1 , w1
2 wi w j
Parameter Estimation:
wi wi Cii w1 , w2
w(z) plot with error regions:
z
1 z
w( z ) w0 w1
w z
w1 ( z ) w z
i , j 1 wi
w
2
i , j wi , j
Covariance Matrix
w z
w j w
i , j wi , j
Cij w1 , w2
0.078 0.189 0.011
0.088 0.184 0.011
0.143 0.167 0.019
0.188 0.169 0.011
0.206 0.180 0.015
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.2
0.4
0.6
0.8