Functional Polymers – Building Blocks for Macromolecular
Download
Report
Transcript Functional Polymers – Building Blocks for Macromolecular
Functional Polymers –
Building Blocks for
Macromolecular and
Supramolecular Architectures
Bogdan C. Simionescu1,2
“Gh. Asachi” Technical University, Iasi, Romania
2 “Petru Poni”Institute of Macromolecular Chemistry, Iasi,
Romania
1
Workshop “Nanostiinta si Nanotehnologie”
Bucuresti, 17-18.09.2008
Nanostructured materials with
controlled architectures and responsive
surfaces
Building blocks
block and graft copolymers
micelles of micro- and macromolecular compounds
functional polymers
conjugated polymers
supramolecular structures
liquid crystalline polymers
coordination polymers
hybrid organic/inorganic structures
micro- and nanoparticles
biomacromolecules
Micro- and nanoparticles
● perfect spherical shape
● extremely uniform size distribution
● accurately controlled diameter
● well-characterized surface (functionality, morphology)
● controlled porosity
● various physical properties
large variety
high surface area
controlled inner reactivity
Topics
Poly[(N-acylimino)ethylene] (PNAI) building
blocks
Functional micro- and nanoparticles based on
PNAI building blocks
PNAI – based gels
Functional siloxane building blocks
Poly(ε-caprolactone) – polydimethylsiloxane diand triblock copolymers (PεCL–PDMS)
PDMS with end or pendant pyrrolyl groups
Polyrotaxanes
Conclusions
Poly[(N-acylimino)ethylenes] (PNAI)
N
O
R
control of structural properties (living cationic polymerization)
biocompatibility or no acute toxicity
hydrophilic or hydrophobic properties (R)
chelating ability
good adhesion to polar surfaces
facile modification to PEI
compatibility with most common organic polymers
chain flexibility
crystallization ability
H2
C
*
N
tailored polymers
multifunctional polymers
complex architectures
C n
H2
C
R
*
O
Poly[(N-acylimino)ethylene]
azo initiators
n
N
O
Br
Br
Br-
N
N
N
(n-1)/2
O+
R
BrN +O
O
H3C
(n-1)/2
O
CH3
H2O
CH3
CH3
K2CO3
O
T C
H3C
HO
O
N
n/2
O
Py
CHCl3
CH3
Cl
*
PNAI azo initiator
O
OH
N
N
CN
n/2
CH3
NC
N
O
Cl
CH3
N
N x
*
Functional polymers by end capping of
living PNAI chains
Br
Br
C6H5 Br
N O
R
N Br
+
R O
N
Br
+
O
R
C6H5
N
C6H5
C6H5
end capping
BrC6H5
C6H5
+
R O
block
copolymer
KI
M
O
HO
Br
OH
O
O
C6H5
O
O
C6H5
O
O
O
C6H5
O
*
HO
C6H5
O
O
C6H5
OH
O
O n
*
O
O
O
C6H5
Functional micro- and nanoparticles
dispersion polymerization
- monomer: styrene
- stabilizer: poly(N-acetylethylenimine) macromonomer
Dn: 10 – 1000 nm
(Dn = 0.5 - 1 m, PI = 1.02 - 1.05)
PI: 1.006 – 1.2
soapless emulsion polymerization
core-shell structure
- monomer: styrene, methyl methacrylate
- poly(N-acetylethylenimine) macroazoinitiator
(Dn = 100 - 200 nm, PI = 1.02 - 1.04)
- monomer: styrene
- poly(N-acetylethylenimine) macromonomer
(Dn ~ 200 nm, PI = 1.006 - 1.04)
microemulsion polymerization
- monomer: methyl methacrylate, butyl methacrylate
- co-surfactant: poly(N-acetylethylenimine) macroazoinitiator or macromer
- main surfactant: SDS
(Dn = 10 - 50 nm, PI = 1.2)
Core-shell nano/micro particles by
soapless emulsion polymerization
size control
high surface functionality
high purity
(“clean” particles)
low toxicity
bio-compound
immobilization ability
film forming ability
narrow size distribution
or “monodispersity”
drug release systems
uniform thin polymer films
(electrode coating, biosensors)
high selectivity membranes
___
1μ
Stable hybrid Pt nanocatalyst/polymer
systems
Pt catalysts
PSt - hydrolysed PNAI latex
colloidal Pt nanocatalyst particles
protected by PSt-g-PNAI copolymer
retention > 90% at
136.8 μg Pt / mL
(60 min reflux)
agglomeration prevented
polymer protected
improved stability - recoverable
Pt (IV) - sorbent
maximum Pt (IV) recovery yield - in buffer
solutions of pH = 10
sorption half time: t1/2 ≈ 90 min
sorption capacity: 1111 μg / g latex
stable until 228 μg Pt / mL
Organic – inorganic composite materials
MMA polymerization in the presence of silica and
PNAI macroinitiator (soapless emulsion polymerization)
Peculiarities
early formed amphiphilic oligomers act as dispersants
increased polymerization rate
increased adhesivity to inorganic particles
water–soluble PMMA-b-PNAI
dispersant
t = 0 min
t = 10 min
homogeneous
composite material
(t = 50 min)
PI = ~ 1.0
Dw = ~ 500 nm
PNAI – based gels
● PROZO modification
followed by a crosslinking reaction of
the functional prepolymers with
polyfunctional compounds
● random copolymerization of
2-substituted-2-oxazoline with
bisoxazoline monomers
M. Heskins and J. E. Guillet, 1968
M. Hahn, E. Görnitz, H. Dautzenberg, 1998
S. Kobayashi et al., 1990
T. Saegusa et al., 1990 -1993
● specific reactions of
functionalized PROZO:
photodimerization of the
photosensitive pendant groups or
coordination of the metal ions to
reactive inserted groups
● copolymerization of
ROZO and bisoxazoline with
special “macroinitiator”
J. Rueda and B. Voit, 2003
Thermosensitive gels
Precipitation polymerization
Monomers: HEMA
NIPAAm (LCST 32°C)
PNAI macromonomers (PEOZO – LCST 36°C)
Reaction conditions: HEMA/NIPAAm/PROZO w/w/w - 1:1:1
60°C, ethanol, AIBN, Ar, 20h
self assembled core-shell microparticles
interconnected pore structure
large channels
open macropores
Stimuli responsive hydrogels
(temperature responsive)
controlled structure and characteristics (hydrophilic/hydrophobic balance,
crosslinking density, amount of thermosensitive chains)
LCST – therapeutic domain ( 28 – 38 °C)
Sample
LCST
(oC)
M6
27.5
M15
32.0
M25
33.0
M45
38.0
E15
28.5
E25
30.0
E35
32.0
E45
31.5
BC1
28.5
BC2
27.6
Swelling/deswelling kinetics
Self-assembling microgels
Self-assembling network
(ordered or not ordered)
PEOZO/PNIPAAm/PHEMA hydrogel
“on-off” switching materials
controlled drug delivery and storage systems
biomacromolecules storage/release
tissue engineering, in combination with biodegradable
polymers (collagen)
Siloxane building blocks
Si O Si O
hybrid organic - inorganic polymers
biocompatibility (physiological inertness)
high gas permeability
good oxidative, thermal and UV stability
high chain flexibility
very low solubility parameter and low surface tension (immiscibility
with most organic polymers)
Functional siloxanes and siloxane copolymers
blend compatibilizers
surface modifiers
biomaterials (contact lenses, implants, transdermal penetration enhancers)
Poly(ε-caprolactone) – polydimethylsiloxane
di- and triblock copolymers
Controlled coordinating anionic polymerization
Si O Si (CH2)3 O CH2 CH2 OH
+ ε-caprolactone
Al
ROH
TEtAl
OR
Al
e
CL
Al
[
O
[O
] OR
CO
n+1
]
CO
OR
n
Al
R'OH
OR'
+ H
[O
]nOR
CO
3012.5
2555.8
3583.4
3811.9
2099.0
Maldi Tof spectra of caprolactone –
siloxane copolymers
4154.3
1756.9
4725.4
PεCL - PDMS copolymer morphology
(polarized optical microscopy)
CL2000-SiO1000-CL2000
CL6000-SiO1000-CL6000
Poly(ε-caprolactone) – polydimethylsiloxane
di- and triblock copolymers
Poly(ε-caprolactone)
biocomatible and biodegradable
relatively hydrophobic
high cristallinity
vehicles for the slow
release of drugs
biodegradable and biocompatible
ceramers for the repair of
skeletal tissues
PεCL-PSi nanoparticles loaded
with IMC and VE
Unloaded particles
Size: 124 – 194 nm
Distribution width: 0.07 – 0.15
Loaded particles
IMC
Size: 130 – 194 nm
Distribution width: 0.11 – 0.18
VE
Size: 249 – 350 nm
Distribution width: 0.43 – 0.57
Drug loading efficiency (%)
IMC 10.05 – 12.80
VE
52.80 – 54.75
Conducting polymers in rotaxane
structures
Polyrotaxanes – supramolecular inclusion complexes composed of
macrocycles (host molecules) threaded onto linear macromolecules (guests)
Rotaxane structures
Conducting polymers
rigid structures
low molecular weights
insoluble, not meltable, difficult
to process
photo- and electro-active devices
catalysis
membranes for mass transfer
increased solubility
superior balance of physical
properties and processing
capabilities
diminished aggregation or
concentration quenching by
maintaining the co-facial πsystems at the fixed minimum
separation determined by the
thickness of macrocycle walls
Polyaniline
Polypyrrole
H
N
N
H
POLYMER
CONDUCTIVITY
(S/cm)*
SOLUBILITY
(DMF)**
4.5 x 10-2
(-)
Polyaniline / CD
8.4 x 10-4
(+)
Polyaniline / βCD
1.8 x 10-3
(+)
6.1 x 10-3
(-)
Polypyrrole / CD
4.8 x 10-4
(+)
Polypyrrole / βCD
5.2 x 10-3
(+)
Polyaniline
Polypyrrole
* after dopping with iodine
** (-), insoluble; (+), soluble
β-cyclodextrin – polydimethylsiloxane
polyrotaxanes
CH3
Si
CH3
+ H
O
CH3
Si
O
Si
CH3
4
CH3
CH3
H
H2SO4
Si
H
O
n
CH3
CH3
Si
H
CH3
H-PDMS
TMDS
D4
CH3
H2PtCl6
100oC
H2C
+ H2C
H2
C
O
H
C
CH
CH2
O
AGE
CH3
H
C
H2C
H2
C
O
CH2CH2CH2
O
Si
CH3 CH3
O
CH3
n
Si
H2
C
C
H
O
H2
C
H
C
CH2
O
CH3
E-PDMS
1. -CD
+
CH3
H
N
H2
C
H
C
H2
C
O
CHCH2CH2
OH
Si
CH3
2. H2N
CH3
O
Si
n
CH3
PRot
= -CD
NH2 = (C6H5)3CC6H4NH2
CH2CH2CH2
O
H2
C
H
C
OH
H2
C
H
N
β-cyclodextrin – polydimethylsiloxane
polyrotaxanes
Epoxy-terminated PDMS – β CD
+ free β CD
perfect parallelepipeds
mean edge size of
parallelepipeds – 0.81 μm
each crystal consists of
stacked lamellae
mean lamellae width – 0.1 μm
Epoxy-terminated PDMS – β CD
long rod-like crystals
mean thickness of the
crystals – the same value as
the mean lamellae size
Pyrrolyl terminated PDMS
Equilibration of D4 with AP-DS
CH
3
CH
CH CH
3
3
H N - (CH ) - Si - O - Si - (CH ) - NH
2
2 3
2 3
CH
3
CH
(AP-DS)
+
2
Si
3
(D )
4
CH
2 3
2 3
CH
3
CH
Coupling of AP-PDMS with GPy
3
H N - (CH ) - (Si - O)n - Si - (CH ) - NH
2
O
4
3
o
bulk,80 C
tetramethylammonium
siloxanolate
CH
3
2
(AP-PDMS)
N
+
CH CH
3
2
CH
O
2
(GPy)
(AP-PDMS)
isopropanol
o
80 C
CH
3
CH
3
N - CH - CH - CH -HN - (CH ) - (Si - O) - Si - (CH ) - NH- CH - CH - CH -N
2
2
2
2
2 3
n
2 3
CH
CH
OH
OH
3
(PyP-PDMS)
3
PDMS with pendant pyrrolyl groups
CH
CH
3
3
CH
CH
3
3
[(Si - O)n - Si - O]p- Si - CH3 +
CH
3
H
CH
CH = CH
2
3
(H-PDMS)
NH
o
Pt,100 C
CH
CH
3
3
CH
CH
3
2
3
[(Si - O)n - Si - O]p- Si - CH3
CH
3
CH
2
CH
4
3
= 0.05 and 0.10 ppm, Si -CH
(A-PDMS)
3
NH
= 0.5-0.8 ppm, Si -CH
-isomer
2.4 ppm, CH - 2
2
= 1.1 ppm, CH -CH
3
-isomer
2.0 ppm, CH -
}
2
}
= 6.6 and 6.9 ppm,
N
CH CH
2
(GPy)
PDMS
(PyPh-PDMS)
CH
O
2
Electrocopolymerization of pyrrole with
pyrrolyl functionalized PDMS
H
N
PDMS
PDMS
N
N H
H N
N
N
N
electrolysis
N H
H N
H-type structure
H
N
PDMS
electrolysis
(PyPh-PDMS)
crosslinked
structure
Homogeneous films with good mechanical
properties and phase separated morphologies
Thermal transitions and thermal stability depend on
dopant nature
Conductivities: 2 - 5 S/cm, independent on dopant
nature
Conclusions
Functional polymers (oligomers) – versatile intermediates (building
blocks) for complex, nanostructured architectures and new polymeric
materials
- core-shell nano- and microparticles
- porous microparticles
- thermosensitive gels (hydrogels)
- organic – inorganic composite materials
- controlled drug delivery systems
- semi-conducting polymer films
- hybrid nanocatalyst/polymer systems
- supramolecular inclusion complexes (polyrotaxanes)
Thank you for your attention!