Transcript Lec8_non

Lecture 8

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

2  

Lecture 8 – Tuesday 2/1/2011

Block 1: on s and

Must Use the Differential Form of Mole Balance

Block 2:  Block 3:  Block 4: 

Pressure Drop: Liquid Phase Reactions:

Pressure Drop does not affect the concentrations in liquid phase rxn.

Gas Phase Reactions:

Epsilon not Equal to Zero d(P)/d(W)=. Polymath will combine with d(X)/f(W)=..for you Epsilon = 0 and Isothermal P=f(W) Combine then Separate Variables (X,W) and Integrate

Engineering Analysis of Pressure Drop

3 Concentration Flow System:

C A

F

A

Gas Phase Flow System:    0  1  

X

T T

0

P

0

P C A

F A

 

F A

0  1   0  1  

X X

T T

0 

P

0

P

C A

 1 0   1  

X X

 

T

0

T P P

0

C B

F B

F A

0 

B

b

  0  1  

X a

T T

0

X P

0

P

C A

0  1  

B

b

X a

X T

0

T P P

0

4 Note: Pressure drop does NOT affect liquid phase reactions

Sample Question:

Analyze the following second order gas phase reaction that occurs isothermally in a PBR: A  B Must use the differential form of the mole balance to separate variables:

F A

0

dX dW

 

r A

 Second order in A and irreversible: 

r A

 

kC A

2

Stoichiometry: Isothermal, T=T  0 Combine: 

C A

F A

 

C A

0  1   1 

X

X

 

P P

0

T

0

T C A

C A

0  1   1 

X

X

 

P P

0

dX dW

kC A

2 0

F A

0   1 1   

X X

  2 2  

P P

0   2 5 Need to find (P/P 0 ) as a function of W (or V if you have a PFR)

6 Ergun Equation: Constant mass flow:

dP dz

 

G

g c D p

       0 0  0  0   0  1  3         150   1

D

 

p

LAMINAR

    

G TURBULENT

         0

F T P

0

T F T

0

P

  0 ( 1  

X

)

T

0

P

0

P T T

0

7 Variable Density    0

P P

0

T

0

T F T

0

F T dP

dz

G

 0

g c D p

 3       150  1

D

p

    1 .

75

G

  

P

0

P T T

0

F T F T

0 Let  0 

G

 0

g c D p

 1  3       150  1

D

p

    1 .

75

G

  

CatalystWeight

W

zA c

b

zA c

 1    

c

8    Where  

c

b

 

bulk

solid density catalyst density porosity

(

a

.

k

.

a

.,

void fraction

)

dP dW

A c

  1    0  

c P

0

T P T

0

F T F T

0 Let  

A c

 1 2    0  

c

1

P

0

9

dy dW

   2

y T T

0

F T F T

0

y

P P

0 We will use this form for single reactions:

d

P dW P

0     2 

P

1

P

0

T

  0 1  

X

dy dW

   2

y T T

0  1  

X

dy dW

   2

y

 1  

X

 Isothermal case

10

dX dW

 2

kC A

0

F A

0  1  1   

X X

  2 2

y

2

dX dW

f

X

,

P

 and

dP dW

f

X

,

P

 or

dy dW

f

y

,

X

 The two expressions are coupled ordinary differential equations. We can only solve them simultaneously using an ODE solver such as Polymath. For the special case of isothermal operation and epsilon = 0, we can obtain an analytical solution.

Polymath will combine the .

, and

11

For dy dW When

     0 ( 1  

X

) 2

y W

 0

y

 1

dy

2   

dW y

2  ( 1  

W

)

y

 ( 1  

W

) 1 / 2

1

P 12 W

13

2

C A

C A

C A

0  1 

X

P P

0  W  

No

P

P

14

3

-r A  

r A

kC A

2 W  

No

P

P

15

4

X W  

No

P

P

16

5

For

   0   0 :

P

0

P

1.0

P



No

P

 W

17    0  1  

X

P

0

P T T

0

f T

T

0

y

P

0

P

   0  1 ( 1  

X

)

y

18 Gas Phase Reaction in PBR with δ A + B  2C = 0 (Analytical Solution) Repeat the previous one with equimolar feed of A and B and

k

A

α

= 1.5dm

6 /mol/kg/min = 0.0099 kg -1 Find X at 100 kg

C A

0 

C B

0

C A

0

C B

0

X

 ?

19 1) Mole Balance: 2) Rate Law: 3) Stoichiometry:

dX dW

 

r

'

A F A

0 

r

'

A

kC A C B C A

C A

0  1 

X

y C B

C A

0  1 

X

y

20

dy dW

   2

y W

 0 ,

y

 1 , 2

ydy

  

dW y

2  1  

W y

  1  

W

 1 2 4) Combine: 

r A

kC

2

A

0  1 

X

 2

y

2 

kC

2

A

0  1 

X

  1  

W

dX dW

 2

kC A

0  1 

X

  1  

W

F A

0

21  1 

dX X

 2 

kC A

2 0  1  

W

dW F A

0 1 

X X

kC A

2 0

F A

0  

W

 

W

2 2  

W

 0 ,

X

 0 ,

W

W

,

X

X X X

  0 .

6 

with

0 .

75

pressure

without drop pressure

drop

,

i

.

e

.

  0 

Polymath Solution A + 2B  C is carried out in a packed bed reactor in which there is pressure drop.The fed is stoichiometric in A and B.

22 Plot the conversion and pressure ratio y = P/P catalyst weight upto 100 kg.

0 as a function of Additional Information k A = 6dm 9 /mol 2 /kg/min α = 0.02 kg -1

23 A + 2B  C 1) Mole Balance:

dX dW

 

r A

F A

0 2) Rate Law: 

r A

 

kC A C B

2 3) Stoichiometry: Gas, Isothermal    0  1 

C A

C A

0 

X

P

0

P

  1 1  

X

X

 

y

24 4) 5) 6)

f C B dy dW

 

C A

0    1

B

  2 

X X

 

y

   0    2

y

 1   1 

y

X

X

  7)    2 3 ,

C A

0  2 ,

F A

0  2 ,

k

 6 ,   0 .

02 Initial values: W=0, X=0, y=1  W=100 Combine with Polymath.

If δ ≠0, polymath must be used to solve .

25

26

27

T = T 0

29

30

31

32 Heat Effects Isothermal Design Stoichiometry Rate Laws Mole Balance

33

End of Lecture 8

34 dP dW    0 F T  A c F T  1 0 P 0 T  P  T 0   c dy dW    0 F T T yP 0 A c F T  1 0  T 0    c dy dW    2 y F T F T 0 T T 0 F T F T 0   1   X  Isothermal: T = T 0   P 0 A C 2   1  0    C Use for heat effects, multiple rxns dX dW    2 y  1   X 

35 A + B  2C

k

 1 .

5

dm

6

mol

kg

 min Case 1: ,

W

 100

kg

  0 .

0099

kg

 1 ,

X

 ?

, ,

P

 ?

C B

0 

C A

0 Case 2:

D P

 2

D P

1 ,

P

02  1 2

P

01 ,

X

 ?

,

P

 ?

C A

0

C B

0

X

 ?

36

r F

A

0

A

dX

 

r

'

A

dW

kC

A

C

B

C

A

C

A

y

 

F F

T

C

B A

y

( 1  

W

) 1 / 2

Parameters