Transcript Slide 1
23.3.2006 ISCM-20 Pinhas Z. Bar-Yoseph Computational Mechanics Lab. Mechanical Engineering, Technion Copyright by PZ Bar-Yoseph © dy f y, t dt t u j f g j t u c F u v F u, u 0 The time interval I 0, T t is partitioned into subintervals I t , t n n n 1 where t n and t n 1 belong to an ordered partition of time levels 0 t 0 t1 t N T. t n 1 tn In t n 1 Each time subinterval is represented by one spectral element. Within each spectral element, the dependent variables are expressed in terms of p-th order Lagrangian interpolants through the Legendre-Gauss-Lobatto points. dy f y, t , t 0 dt 0 y 0 y Discontinuous Galerkin Method (DGM) T dy T w , f y , t w , y n dt I t n 0 where y y y acts as a stabilizer operator Jump operator v lim v x z z 0 dT T 0, t t 0 dt T t 0 T 0 Method of Weighed Residuals (MWR) dT R T , t t 0 dt rT T t n T n t n1 T R dt T r tn T t t n 0 t n1 tn dT T T dt T T t n T n dt rT 0 t t n R T S Space of piecewise polynomials of degree p 0 with no continuity requirements across interelement boundaries: S v L2 I : v I n P p I n , I n I Galerkin + Linear element T N nT n N n 1T n 1 where T T t n K C M e e n e 1 1 1 2 1 e C , M 2 1 1 6 1 2 n T e U n1 , t T e Continuous Galerkin Method (CGM) 0 F 0 T T tn , n T n 1 e 3 n T A Tn 2 3 Amplification A factor A 1 A-Stable Discontinuous Galerkin Method (DGM) T tn e F , 0 T n 1 1 0 K K 0 0 e e 2 3 n n 2 T AT 4 6 A A 1 lim A =0 Asymptotic annihilation L -Stable Bar-Yoseph, Appl. Num. Math. 33, 435-445, 2000 Aharoni & Bar-Yoseph, Comp. Mech. 9, 359-374, 1992 DSM for Dynamic systems H 0 q p t tf H Q q dt p p q p 0 p t 0 q t 0 q 0 q t p t 0 0 0 H Hamiltonian q Generalized displacement p Generalized momentum Discontinuous element t n 1 t t p n 1 , q th n time step n t n t n t n 1 n1 n p , q p t n n , q t n Nonlinear Spatio-Temporal Dynamics of a Flexible Rod Plat & Bar-Yoseph, 27th Israel Conf. Mech. Eng. 683-685, 1998 Bar-Yoseph, Appl. Num. Math. 33, 435-445, 2000 Nave, Bar-Yoseph & Halevi, Dynamics. & Control. 9, 279-296, 1999 The unicycle system, presents an example of inherently unstable system which can be autonomously controlled and stabilized by a skilled rider uW -required to maintain the unicylce’s upright position uT -required to maintain lateral stability M f -the friction torque is assumed to be dependent on the yew rate only The adaptive technique performed very well for all stiff systems that we have experienced with (convection, radiation and chemical reactions), and is competitive with the best Gear-type routines t u j f g, j j 1(1)ndim Linear Eq's. (scalar wave eq.) Nonlinear Eq's. DGM's milestones papers: Reed & Hill, " Triangular mesh methods for the neutron transprt equation", Proc. Conf. Math. Models & Comutational Techniques for Analysis of Nuclear Systems, Michigan, 1973 . Lesaint & Raviart, " On a finite element method for solving the neutron transprt equation", Mathematical Aspects of Finite Elements in PDE's, 1974 u u c 0, t x IC ' s x, t ]x0 , x1[ u x, 0 f x BC ' s ]0, T [ f x u x0 , t u x1 , t where c0 x u x Exact solution Continuous Galerkin Classical artificial diffusion Discontinuous Galerkin x t 3 G3 G1 u 0 in G I u u ν G 2 on w udG G3 w u d 0 3 x p0 w u d 3 u3 3 u w u 3 wu n ν d 0 3 n ν d n ν d 3 1 2 1 u u u2 1 2 1 2 3 n ν d First Order Upwind FD scheme x t f G p 1 e t x t x t n n 1 j 1 j j 1 x DGM u u e e e ˆ ˆ w c d w u d w cu d t x 0 e t x e e G t x n n 1 n D c D L c R U L U c R U t x i i j 0 j 0 j 1 n indicates the time slab j indicates element number within the time slab where N e T N Dt W d , Dx W d e t x Ge Ge T Li ˆ T Nd e , L W t 0 te ˆ T Nd e W t te ˆ T Nd e , R c W ˆ T Nd e Ri c W x 0 x ex ex Space-Time Discontinuous Approximations u S Space of piecewise polynomials of degree p 0 with no continuity requirements across interelement boundaries: S v L2 G : v G P p nG e , nG e G Conventional el. Bar-Yoseph & Elata, IJNME, 29, 1229-1245, 1990 "Gauss-Lagrange" el. Basis functions are po int wise orthogonal at the integration points. ˆ = N and bilinear element: For W = W 2 x 1 Dt xDt 12 2 1 1 2 1 2 1 2 , 1 2 1 2 1 2 2 t 2 D x tD x 12 1 1 2 1 1 2 1 1 1 2 2 1 2 2 4 x 2 Li xLi 12 0 0 2 0 0 4 0 0 , 0 0 0 0 0 0 0 x 0 L 0 xL 0 12 0 0 0 4 2 0 2 4 0 0 0 0 0 0 4 t 0 R i tR i 12 2 0 0 2 0 0 0 0 , 0 4 0 0 0 0 0 t 0 R 0 tR 0 12 0 0 4 0 2 0 0 0 2 0 4 0 0 0 Von Neumann Analysis U n j 1 U n j j 1 U n 0 where exp i 2 / k , k L / x, wave number i 1 wave length Dt D x Li R i R 0 1 U 0n L 0 U 0n 1 A Amplification matrix D t D x L i R i R 0 1 1 L0 Bar-Yoseph & Elata & Israeli, IJNME, 36, 679-694, 1993; Golzman & Bar-Yoseph (Project) Bar-Yoseph & Elata & Israeli, IJNME, 36, 679-694, 1993; Golzman & Bar-Yoseph (Project) Bar-Yoseph & Elata, IJNME, 29, 1229-1245, 1990 Adaptive Refinements Note : This problem can be solved by use of tilted elements, where two elements are sufficient to reconstruct the exact solution. Fischer & Bar-Yoseph, IJNME, 48, 1571-1582, 2000 Advanced CAD Visualization Methods Adaptive Level of Details Technique for Meshing Morphing between Meshes at Different Times CGM Conforming elements. Elemental Contributions are assembled to generate the GLOBAL set of equations. DGM Elements are discontinuous. The size of the LOCAL equations is equal to e the ndof inside the corresponding element. The element matrices can be inverted by using symbolic manipolator once and for all! CGM "Conforming" elements DGM "Non-conforming" elements The degree of the approximating polynomial can be easily changed from one element to the other. Space-Time Discontinuous Approximations u t x DGM remains compact with high-order polynomial basis (essential for unstructured mesh computation) Discontinuous SPECTRAL ELEMENTS •Gauss-Lobatto nodes are clustered near element boundaries and are chosen because of their interpolation and quadrature properties. • Mass lumping by nodal quadrature. • Exponential rate of convergence. •The increase in the ndof due to the discontinuity at the interelement boundaries is balanced in high order elements. DGM can easily handle adaptivity strategies since refinement or unrefinement of the mesh can be achieved without taking into account the continuity restrictions typical of conforming FEM (needs transition elements). x h - p type of convergence can be easily implemented, since no continuity requirement is a priori imposed on the test and trail space of functions. t x Parallel adaptive DGFE computation. t DGM are highly parallelizeable. 14 15 12 9 6 1 V 13 10 7 3 16 8 11 5 4 2 x The compact (nearest neighbor) scheme minimizes interelement communication. in , j 11M t u j f j 0 Flux Splitting i f f f i i w , u t j f j e N N w , [[ f i]] e i 1 w , [[u]] e t 2 i1 0 Bar-Yoseph,Comput. Mech., 5, 145-160, 1989 w , [[ f i]] i 1 w V h ; e 2 i , j 11M Miles Rubin (2005) Nonlinear Wave Eq. 2 u 2u 2 , c 2 2 X t where 2 c c 2 0 1 2 1 u 1 X E c02 0 0 Flux splitting for non homogeneous f i u f i f i i 0 f Au u f i f i i 0 f Au u Traper & Bar-Yoseph (Project) 2 u f 0 , x (0, L) 2 t x where: 1 u2 1 1 u2 f c 2 0 1 u1 u1 u u 2 The effective wave speed: 1 c c 1 2 In a matrix form: 1 1 0 u1 0 c02 1 0 1 t u 2 1 2 0 1 1 u 2 2 1 u1 0 2 1 u 2 x u2 0 0 • The Jacobian matrix: 1 2 0 c 0 Au 1 1 1 2 1 u 2 0 • The eigenvalues: 1 1 2u2 u2 2 1 c0 1 1 u2 1 1 2u2 u2 2 2 c0 1 1 u2 • The corresponding eigenvectors: v1 c0 1 1 2u2 u2 2 1 1 u2 1 v 2 c0 1 1 2u2 u2 2 1 1 u2 1 2 1 1 1 2u2 u2 1 2 1 u2 c0 u1 c0 u2 1 1 u2 2 1 1 u2 2 f f1 2 1 1 2u2 u2 1 u2 1 1 u2 2 2 u1 2 c0 1 u2 1 2u2 u2 2 1 1 1 2u2 u2 1 2 1 u2 c0 u1 c0 u2 1 1 u2 2 1 1 u2 2 f f2 2 1 1 2u2 u2 1 u2 1 1 u c u 1 0 2 2 2 2 1 u 1 2 u u 2 2 2 2 1 1 1 2u2 u2 c0 1 1 u2 2 A A1 1 2 2 1 1 1 2u2 u2 c0 1 1 u2 2 A A2 1 2 1 1 2u2 u2 2 1 u2 1 u2 1 2u2 u2 2 1 1 u2 c02 2 1 1 u2 1 c0 2 1 1 2u2 u2 2 1 u2 1 u2 1 2u2 u2 2 1 1 u2 c02 2 1 1 u2 1 c0 2 Traper & Bar-Yoseph (Project) x, t Displacement 0.5, L 1, c0 1, 0 0.2 Velocity 0.5, L 1, c0 1,0 0.2 Strain 0.5, L 1, c0 1,0 0.2 • Tcr -Time for breakdown [Lax (1964)]: Tcr 2 max K,u2 0 , xx 0 1 K c0 1 u2 2 1 K ,u2 0 c0 1 maxu 2 , x 0 0.2 2 L2 21 L2 3.0396 Tcr 2 0.2c0 1 Coarse (& Uniform) grid bilinear biquadratic u1 x Velocity at t = 3 sec 0.5, L 1, c0 1,0 0.2 u2 bilinear biquadratic x Strain at t = 3 sec 0.5, L 1, c0 1,0 0.2 Explicit Vs. Implicit schemes The discontinuous approximation can capture shock waves and other discontinuities with accuracy. Bar-Yoseph et al., JCP, 119, 62-74, 1995 Bar-Yoseph & Moses, IJNMHFF, 7, 215-235, 1997 Runge-Kutta Discontinuous Galerkin (RKDG ; LDGM) t u c F u v F u, u 0 t u F u, u 0 where F u, u c F u v F u, u d u u d u F u, u n d u F u, u d 0 dt e e e H numerical flux Cockburn& Shu, JCP, 84, 90, 1989; Basi & Rebay, JCP, 131,267-279, 1997 Runge-Kutta Discontinuous Galerkin (RKDG) t u c F u v F u , u 0 (1) D u 0 c v u F u F u, D 0 t (2) (3) (2) D D d D e e u n d D H numerical flux D u d 0 e (4) (3) d u u d u dt e e c F u n d u e F u d e H numerical flux c u v F u, D n d u v F u , D d 0 e e H numerical flux v Note : When evaluating boundary integral of (5) along e , the flux terms, u n, c F u & v F u, D , are not uniquely defined due to the discontinuous approximation. c c H c F u , H 1 2 v F D H 1 2 u u n, u, D v F u, D n. (6) (5) Semi-discrete method dU M K U 0 dt This system of ODE's is integrated with a Runge-Kutta method.