Transcript Document
Project BNB-Grid: solving large scale optimization problems in a distributed environment M. Posypkin (ISA RAS) GLOBAL OPTIMIZATION Given f : f :G Find x0: f ( x ) min f ( x) , x G 0 APPLICATIONS OF GLOBAL OPTIMIZATION VLSI design Automated theorem proving Constructing optimal transport networks Selecting a best investment package Computational chemistry: finding molecular conformations OFTEN HARD TO SOLVE ! BRANCH-AND-BOUND METHOD BRANCHING SUB-PROBLEM DISCARDED SUBPROBLEM: 1. NO SOLUTION 2. KNOWN OPTIMUM 3. OPTIMUM IS NOT BETTER THAN INCUMBENT (ALREADY FOUND) BRANCHING TREE BNB parallelization HIGH COMPLEXITY TREE-LIKE STRUCTURE SUITABLE FOR DECOMPOSITION SUITS FOR DISTRIBUTED COMPUTING DISTRIBUTED ENVIRONMENT BNB-Grid: ARCHITECTURE CE-AGENT #1 CE-AGENT #2 IARnet CE-AGENT #3 MASTER AGENT AGENT FUNCTIONALITY COMPUTING ELEMENT AGENT Start solver Interact with the CE batch system Load initial data Monitor computing element Send and receive sub-problems MASTER AGENT Manage distributed application Manage load balancing Monitor and visualize computational process INSIDE A COMPUTING ELEMENT CE Agent BNB-Proxy BNB-Solver Interaction with BNB-Solver. A library for solving optimization problems on multiprocessor and uni-processor systems FAULT-TOLERANCE in BNB-Grid Dynamically changing computing space: nodes may leave or join at run-time BNB-Grid backs up sub-problems and resubmits them In the case of the node failure EXPERIMENTAL RESULTS: PLATFORM 1048 x PowerPC 970 2,2 GHz, 2096 GB, Myrinet 256 x Itanium 2 1.6 GHz, 256 GB, Myrinet Workstation (ISA) МВС 15000 BM (JSCC) МВС 6000 IM (CC) EXPERIMENTAL RESULTS: KNAPSACK PROBLEM We are given n items with weights wi and profits pi and a knapsack with capacity C. The objective: select a subset of items such that the total profit is maximized and the total weight does not exceed C: n f ( x) pi xi max i 1 n w x i 1 i i C xi 0,1 i 1,2,...,n EXPERIMENTAL RESULTS: DATA The hard knapsack instance (introduced by Finkelshtejn): 32 2x i 1 i max, n 2 xi 2 1 2 i 1 32 8 CPU on MVS 15000 BM 5.57 min 8CPU on MVS 6000 IM 6.04 min 8CPU on MVS 15000 BM + 8 CPU on MVS 6000 IM 3.15 min CONCLUSIONS Usage a number of supercomputers in BNB-Grid does increase performance for large scale optimization problems IARnet framework makes development of complex distributed applications rather simple THANK YOU! КЛАССИЧЕСКИЕ МОДЕЛЬНЫЕ ЗАДАЧИ ОПТИМИЗАЦИИ Задача коммивояжера Задачи о покрытиях и разрезаниях графов Задача о ранце (одномерная и многомерная) Задачи транспортного типа Поиск глобального экстремума функции многих переменных … ДЛЯ РЕШЕНИЯ ТРЕБУЮТСЯ БОЛЬШИЕ ВЫЧИСЛИТЕЛЬНЫЕ РЕСУРСЫ