www.agmip.pk

Download Report

Transcript www.agmip.pk

Improving water use efficiency of wheat:
A case study from Australia
Dr. Babar Manzoor Atta
Senior Scientist, NIAB, Faisalabad
FACULTY OF AGRICULTURE
& ENVIRONMENT
International Seminar on Climate Change
Adaptation Strategies to Ensure Food Security
University of Agriculture, Faisalabad
January 16-17, 2014
The significance of this work
 Drought
 WUE wheat varieties
2
Materials and methods
COMPONENT 1: FIELD STUDIES
Location:
Plant Breeding Institute (PBI), Narrabri, NSW.
Plant material:
2009 = 15
2010 = 20
2011 = 20
Soil moisture treatments:
i.
High moisture
ii.
Low moisture/rainfed
No irrigation applied in 2010 (wet season)
Experimental Design:
Alpha-lattice designs with three replications
Procedure:
 Aluminum neutron probe access tubes fixed after sowing
 Moisture was assessed fortnightly with NMM
3
Materials and methods
Parameters
Water use
› Soil water content
› Water use (at anthesis; maturity)
› WUE (DM Anthesis, DM maturity, grain)
Whole plant parameters
› Days to heading
› Days to maturity
› Plant height
› Biomass at anthesis
› Biomass at maturity
› Number of tillers
› Grain yield per m2
› Harvest Index
› Grain yield
› Drought Susceptibility Index (DSI)
› Normalized difference vegetation index (NDVI)
› Canopy cover (Digital imaging)
› Chlorophyll content
›Canopy temperature depression (CTD)
› Carbon isotope discrimination (∆)
Flag leaf traits
› Leaf area
› Leaf length
› Leaf width
› Leaf weight
› Specific leaf weight
› Specific leaf area
Spike parameters
› Awn length
› Spike length
› Spikelet density
› Number of spikelets per spike
› Number of grains per spike
› Single spike weight
› Grain weight per spike
4
Materials and methods
› Number of kernels per spikelet
› 1000 grain weight
Root traits
› Root length (0-15 cm)
› Root length (15-30 cm)
› Root length (30-60cm)
› Total root length (0-60 cm)
› Root average diameter (0-15 cm)
› Root average diameter (15-30 cm)
› Root average diameter (30-60 cm)
› Total root average diameter (0-60 cm)
› Root length density (0-15 cm)
› Root length density (15-30 cm)
› Root length density (30-60 cm)
› Root length density (0-60 cm)
Statistical analysis
› GenStat 14th edition
The Fischer and Maurer (1978) drought
susceptibility index (DSI) of each genotype for the
stress treatment was calculated as:
DSI = (1-Ys/Yi)/(1-Xs/Xi)
Where Ys = yield under stress treatment; Yi =
yield without stress; Xs and Xi = average yield
over all genotypes under stress and non-stress
treatments, respectively.
5
Materials and methods
COMPONENT 2: GENOME-WIDE ASSOCIATION ANALYSIS
› Yield
› Stripe rust
› Leaf rust
› Crown rot
Software:
› R version 2.13.1 (R Core Team 2012)
http://www.R-project.org/
6
Sr. No.
Genotype
Year of
release
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
MILAN/KAUZ/5/CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/
CROC_1/AE.SQUARROSA (224)//OPATA/3/PASTOR
CROC_1/AE.SQUARROSA (224)//2*OPATA/3/2*RAC655
CETA/AE.SQUARROSA (327)//2*JANZ
QT6581/4/PASTOR//SITE/MO/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN
D67.2/P66.270//AE.SQUARROSA (320)/3/CUNNINGHAM
Janz
Giles
Cunningham
Sokoll
Crusader
LPB05-2271
LPB05-1164 (Scout)
LPB05-1157 (Envoy)
LPB05-2148 (Spitfire)
1989
1999
1990
2008
2010
2011
2011
Lang
2000
17
Sunco
1986
18
Carinya
2008
19
Sunvale
1993
20
Ventura
2004
7
8
250
150
2009
100
2010
2011
50
0
Month
300
Comparison of rainfall
during 2009-2011
In-season rainfall (mm)
Rainfall (mm)
200
250
200
150
100
50
0
2009
2010
Year
2011
9
Results
Date
Source of variation/d.f
DAS
Genotype
14
Depth
Genotype.Depth
3
42
Growth stage
31.07.2009
57
0.00335ns
0.56391***
0.00051ns
10.08.2009
67
0.00662*
0.45508***
0.00090ns
25.08.2009
82
0.00487**
0.62889***
0.00044ns
Booting/heading
09.09.2009
97
0.00533**
0.31814***
0.00052ns
Anthesis
16.09.2009
104
0.00506***
0.51194***
0.00036ns
Milk
24.09.2009
112
0.00688**
0.3298***
0.00033ns
Milk
01.10.2009
119
0.00591***
0.54091***
0.00030ns
Dough
08.10.2009
126
0.00569***
0.56165***
0.00030ns
Dough
13.10.2009
131
0.00488**
0.51864***
0.00032ns
Ripening
03.11.2009
152
0.00565***
0.37087***
0.00036ns
Maturity
ANOVA for genotype and depth for ten dates in high moisture environment during 2009
10
SOV
df
Water use
Anthesis
(mm)
Genotype
14
117.34ns
291.4*
8.351*
6.807**
-
19.4
3.3
2.3
1
268.3 bcd
31.55 cde
13.82 de
2
287.9 a
32.72 bcde
14.4 cd
3
283.4 ab
32.33 bcde
15.89 abcd
4
263.6 cd
35.03 ab
16.57 abc
5
276.9 abc
32.62 bcde
14.5 bcd
6
273.6 abcd
36.07 a
18.04 a
7
274.2 abc
32.01 bcde
16.35 abc
8
276.3 abc
34.06 abc
16.81 ab
9
260.7 cd
30.04 e
13.85 de
10
273 abcd
31.36 cde
14.54 bcd
11
254.6 d
33.77 abcd
16.27 abc
12
261.5 cd
31.78 bcde
14.59 bcd
13
270.6 abcd
33.61 abcd
15.75 abcd
14
283.3 ab
30.57 de
12.05 e
15
258.5 cd
34.2 abc
14.61 bcd
LSD (P<0.05)
Water use
Maturity
(mm)
WUEDM
Maturity
kg ha-1 mm-1
WUEGrain
kg ha-1 mm-1
Mean square and means for WU and WUE in high moisture environment during 2009
11
Grain yield (kg ha-1)
5500
y = 182.81x - 1874
R² = 0.53*
5000
4500
Series1
Linear (Series1)
4000
3500
3000
25
30
35
WUEDM (kg
ha-1
40
mm-1)
Grain yield (kg ha-1)
5500
y = 264.08x + 106.31
R² = 0.88**
Relationship of WUEDM and
WUEGrain with grain yield in
high moisture environment
during 2009.
5000
4500
Series1
4000
Linear (Series1)
3500
3000
10
15
20
WUEGrain (kg ha-1 mm-1)
12
19
y = 0.7175x - 8.3278
R² = 0.64**
WUEGrain (kg ha-1 mm-1)
18
17
16
15
Series1
Linear (Series1)
14
13
12
11
27
29
31
33
35
37
WUEDM (kg ha-1 mm-1)
Relationship of WUEDM with WUEGrain
(High moisture environment, 2009)
13
Rainfed trial
4100
y = 197.75x + 62.203
R² = 0.96**
Grain yield (kg ha-1)
3800
3500
3200
Series1
2900
Linear (Series1)
2600
2300
2000
10
12
14
16
18
20
22
WUEGrain (kg ha-1 mm-1)
Relationship of WUEGrain with grain yield
(Low moisture environment, 2009)
14
SOV
df
Water use
Anthesis
(mm)
Genotype
19
18.35***
15.98**
3.36
LSD
(P<0.05)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
WUEDM-Anthesis
(kg ha-1 mm-1)
Water use
Maturity
(mm)
WUEDM-Maturity
(kg ha-1 mm-1)
WUEGrain
(kg ha-1 mm-1)
135.22***
6.18**
2.47***
4.69
5.96
2.96
1.28
275.5 h
26.83 ab
419.6 fghi
24.4 ef
9.8 efgh
285 abcd
31.4 a
420.9 fgh
29.03 a
11.59 abc
287.4 ab
23.62 bcde
438.1 ab
26.23 abcdef
8.73 hi
280.3 g
25.83 bc
419.1 ghij
28.29 ab
11.61 abc
288 a
27.79 ab
413.4 j
28.69 a
12.15 a
285.4 abcd
24.56 bcde
423.4 efg
27.19 abcde
11.78 ab
285.3 abcd
23.76 bcde
434.1 bc
27.99 abc
9.59 fgh
288 a
24.23 bcde
437.4 ab
26.19 abcdef
10.62 bcdef
280.9 fg
20.7 de
430.8 cd
24.63 def
9.91 efgh
284.9 abcd
27.34 ab
417.3 hij
28.17 abc
11.2 abcd
282.1 defg
25.38 bcd
423.5 efg
25.72 bcdef
10.97 abcde
282.7 cdefg
25.3 bcd
430.3 cd
23.94 f
10.73 bcdef
281.4 efg
27.73 ab
414.1 ij
28.33 ab
10.41 cdef
280.5 fg
27.69 ab
420.7 fgh
27.23 abcde
10.04 defg
284.5 bcde
24.45 bcde
425.2 def
25.38 bcdef
9.04 ghi
283.8 cdef
23.44 bcde
441.2 a
25.21 cdef
9.63 fgh
283.9 cdef
21.23 cde
423.9 efg
24.08 f
10.6 bcdef
281.4 efg
21.97 cde
428.6 cde
27.58 abcd
10.91 abcde
282.3 cdefg
20 e
437 ab
23.52 f
7.96 i
285.5 abc
27.21 ab
423.7 efg
27.42 abcd
9.03 ghi
Mean square and means for WU and WUE in environment 1, 2010
15
Grain yield (Kg/ha)
5500
y = 366.27x + 662.15
R² = 0.90**
5000
4500
Series1
4000
Linear (Series1)
Environment 1
3500
3000
6.0
8.0
10.0
12.0
14.0
WUEGrain (kg ha-1 mm-1)
Grain yield (kg/ha)
6000
y = 308.55x + 1559.7
R² = 0.78**
5800
5600
5400
Series1
5200
Environment 2
Linear (Series1)
5000
4800
4600
10
11
12
13
14
WUEGrain (kg ha-1 mm-1)
Relationship of WUEGrain with grain yield during 2010
16
2009-2011
Source of variation
d.f. Booting Anthesis
Milk
Dough
Maturity
Environment
5
0.41720*** 0.21378***
0.26041***
0.10701***
0.31634***
Residual
5
0.00133
0.00172
0.00167
0.00204
0.00276
Genotype
14
0.00166ns
0.00239**
0.00310***
0.00250**
0.0028**
Environment.Genotype
70
0.00152ns
0.00188***
0.00166***
0.00180**
0.00176*
Residual
84
0.00117
0.00089
0.00081
0.00096
0.00106
Depth
3
0.82121*** 0.67628***
0.96540***
0.85151***
0.82940***
Environment.Depth
15
0.05087*** 0.03782***
0.04950***
0.03651***
0.02084***
Genotype.Depth
42
0.00027ns
0.00040*
0.00037*
0.00034*
0.00036**
Environment.Genotype.Depth
210
0.00026*
0.00036***
0.00032**
0.00033**
0.00036***
Residual
270
0.00019
0.00028
0.00023
0.00022
0.00020
Total
719
4.6
4.2
cv (%)
3.7
4.5
4.5
Combined analysis of soil moisture for individual growth stage of 15 genotypes,
2009-2011.
17
Genotype
Stress grain
yield
Non-stress
grain yield
Mean
%
Reduction
DSI
1
3096
3696
3396
16
0.75
2
3259
4140
3700
21
0.98
3
3178
4507
3842
29
1.35
4
3841
4367
4104
12
0.55
5
3907
4008
3958
3
0.12
6
3453
4955
4204
30
1.39
7
3092
4464
3778
31
1.41
8
2841
4641
3741
39
1.78
9
2637
3628
3133
27
1.25
10
2769
3954
3361
30
1.38
11
3858
4138
3998
7
0.31
12
3552
3830
3691
7
0.33
13
3177
4261
3719
25
1.17
14
2867
3414
3140
16
0.74
15
2789
3775
3282
26
1.20
Mean
3221
4119
3670
22
1.00
Genotype mean performance under high and low moisture environments
and their drought susceptibility index (DSI), 2009.
18
5900
y = 0.2411x + 2115.7
R² = 0.59**
Grain yield (kg ha-1)
5700
5500
5300
Series1
5100
Linear (Series1)
4900
4700
4500
10000
11000
12000
13000
14000
15000
16000
Biomass at maturity (kg ha-1)
Relationship between biomass and grain yield, 2009-2011
19
5800
y = 4145.6x + 2442.7
R² = 0.44*
Grain yield (kg ha-1)
5600
5400
5200
Series1
Linear (Series1)
5000
4800
4600
0.5
0.55
0.6
0.65
0.7
0.75
0.8
NDVI (Milk stage)
Relationship between NDVI and grain yield, 2009-2011
20
5800
y = 456.08x + 2489.3
R² = 0.64**
Grain yield (kg ha-1)
5600
5400
5200
Series1
Linear (Series1)
5000
4800
4600
4.5
5
5.5
6
6.5
7
Post flowering CTD
Relationship between canopy temperature depression and grain yield, 2009-2011
21
Results
Explanatory variables
WUEDM-Maturity
WUEGrain
Yield
1.
NDVI
NDVI
NDVI
2.
LL
LW
LW
3.
CTD
CTD
CTD
4.
BIA
BIA
BIM
5.
BIM
BIM
HI
6.
PH
PH
TGW
7.
HI
HI
WUEDM-Maturity
8.
NKPS
NKPS
WUEGrain
9.
TGW
TGW
10.
GRY
GRY
11.
WUEGrain
WUEDM-Maturity
12.
SL
Percent Variance
98
98
98
Multiple regression analysis using grain yield, WUEDM-Maturity, and WUEGrain as
the response (dependent) variables.
22
Results
Genome-wide Association analysis in a commercial
wheat breeding program
23
S. No.
Number of genotypes
2008
2009
2010
Trial locations
State
1.
Narrabri
NSW
288
299
82
2.
Walgett
NSW
288
299
82
3.
Biniguy
NSW
288
299
82
4.
North Star
NSW
288
299
82
5.
Parkes
NSW
287
-
-
6.
Horsham
VIC
288
299
81
7.
Wee Waa
NSW
-
296
79
8.
Quirindi
NSW
-
299
82
9.
Queensland
QLD
-
299
-
10.
Premer
NSW
-
-
82
11.
Walgett (crown rot)
NSW
-
-
75
12.
McAlister
NSW
-
-
81
13.
Young
NSW
-
-
81
14.
Wagga Wagga
NSW
-
-
81
15.
Meandarra
QLD
-
-
81
Number of genotypes in AGT wheat yield trials (2008-2010) and used for
association analysis
24
Year:
Genotype:
|----------------2008---------------|------------------------2009-----------------------|----------------------------------------2010-----------------------------------------|
288
299
82
>8
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
>8
−log10(P)
Nar08, Narrabri 2008; Wal08, Walgett 2008; Bin08, Biniguy 2008; NSto8, North Star 2008; Par08, Parkes 2008; Hor08, Horsham (Victoria) 2008
Nar09, Narrabri 2009; Wal09, Walgett 2009; Bin09, Biniguy 2009; NSt09, North Star 2009; Wee09, Wee Waa 2009; Qui09, Quirindi 2009; Hor09, Horsham 2009; Qld09,
Queensland 2009
Nar10, Narrabri 2010; Wal10, Walgett 2010; Bin10, Biniguy 2010; NSt10, North Star 2010; Wee10, Wee Waa 2010; Qui10, Quirindi 2010; Pre10, Premer 2010; Walcr10,
Walgett Crown rot 2010; Mca10, McAlister 2010; You10, Young 2010; Wag10, Wagga Wagga 2010; Hor10, Horsham 2010; Mea10, Meandarra 2010.
Association analysis of yield trait in multi-environments from 2008-2010
25
Year:
Genotype:
|-----------------------------------------2009------------------------------------------|-----------------------------------------2010-----------------------------------------|
285
77
S1_09, Narrabri, Score 1; S2_09, Narrabri, Score 2; S3_09, Narrabri, Block I3 (Trial); S4_09, Cobbitty, Score 1; S5_09, Cobbitty, Score 2;
S6_09, Roseworthy (SA)
S1_10, Narrabri, Block I6 (Trial); S2_10, Narrabri, Block I4, replication 1; S3_10, Narrabri, Block I4, replication 2; S4_10, Narrabri, TOS Block; S5_10,
Narrabri, Hydrant 10; S6_10, Cobbitty, Score 1.
Association analysis of stripe rust in multi-environments (2009-2010)
26
Year:
|-----------------2009-----------------|-------------------2010--------------|---------------------------2009-------------------------|----------------2010-----------------|
Genotype:
285
77
285
77
Leaf rust: L1_09, Cobbitty score 1; L2_09, Cobbitty score 2; L1_10, Cobbitty score 1; L2_10, Cobbitty score 2;
Crown rot: C1_09, Narrabri, Nursery, Score 1; C2_09, Walgett, Crown rot trial score; C3_09, Walgett, Crown rot trial maturity score; C1_10, Narrabri,
Nursery, Score 1; C2_10, Narrabri, Nursery, Score 2.
Association analysis of leaf rust and crown rot, 2009-2010
27
New marker trait associations identified for grain yield
Chromosome
Significant DArT markers
1A
4
1B
1
1D
4
2A
10
5A
2
5B
6
6A
19
6D
4
7A
22
7D
22
28
New marker trait associations for stripe rust resistance
Chromosome
Significant DArT markers
1D
2
3A
2
3B
13
3D
20
4B
6
29
New marker trait associations for leaf rust resistance
Chromosome
Significant DArT markers
3A
1
3B
4
5A
1
30
New marker trait associations for crown rot resistance
Chromosome
Significant DArT markers
1B
8
2B
4
2D
30
3A
7
3D
9
4A
8
5B
18
6A
9
6B
10
6D
4
7A
6
7B
15
7D
10
31
Future work
PBI No.
Genotype
Positive markers
1
Crusader
49
10
Stampede
43
11
Sunstate
40
45
SUN344 E/VPMB36020
42
61
SUNCO/2*PASTOR//SUN436E
47
94
SUN434A/SUN436E.116.4
42
98
EGA Bonnie Rock/SUN436F
41
99
B409C/SUN420A//SUN498E
43
100
CHARA/B409C//SUN498E
47
101
RAC892/98ZHB03//RAC892
44
137
Chara/4*Sun376G
46
151
RAC1192/Ventura
50
196
DM5637*B8/H45//SUN498D
42
208
Ellison/Ventura
48
236
SUN500B/Carinya
41
255
Sunstate/Ellison
47
273
WA-1-21005/2*SUN426B
52
283
Yr15,24,2*399C.87
43
299
SUN445C/QT10776
43
300
2*M5880/SUN366A
44
Pyramiding the genomic regions
AxB CxD ExF GxH
F1
x F1
F1
I x J
F1
x
x
x F1
F1
DH
32
Conclusion
 Synthetic lines
 WUE wheat ideotype:
Roots traits
o A more efficient root system
Agro-physiological traits
o Increased early ground cover (NDVI)
o Early flowering
o High biomass, harvest index, CTD
o Greater spike traits (No. of kernels per spikelet, 1000 grain weight)
o Higher grain yield
 The MTAs identified for the key traits responsible for improved
productivity and adaptation could be used to pyramid favorable alleles
into modern cultivars.
33
34