The Method of Fundamental Solutions and Compactly

Download Report

Transcript The Method of Fundamental Solutions and Compactly

Numerical Solution of Partial Differential Equations
Using Compactly Supported Radial Basis Functions
C.S. Chen
Department of Mathematics
University of Southern Mississippi
7/7/2015
1
PURPOSE OF THE LECTURE
TO SHOW HOW COMPACTLY SUPPORTED RADIAL
BASIS FUNCTIONS (CS-RBFs) CAN BE USED TO
EXTEND THE APPLICABILITY OF BOUNDARY
METHODS TO PROVIDE 'MESH FREE' METHODS
FOR THE NUMERICAL SOLUTION OF PARTIAL
DIFFERENTIAL EQUATIONS.
7/7/2015
2
7/7/2015
3
MESHLESS METHOD
MESH METHOD
7/7/2015
4
The Method of Particular Solutions
Consider the Poisson’s equation
Lu  f (x), x  ,
u  g (x), x  ,
(1)
(2)
Where   Rd , d  2,3, is a bounded open nonempty domain
with sufficiently regular boundary .
Let v  u  u p where u p satisfying Lu p  f (x) (3)
but does not necessary satisfy the boundary condition in (2).
v satisfies
7/7/2015
Lv  0, x  ,
u  g (x)  u p (x),
x  .
(4)
(5)
5
• Domain integral Domain integral
u p ( P)   G ( P, Q;  ) f (Q)dv

G( P, Q;  ) is a fundamental solutionfor
L
• Atkinson’s method (C.S. Chen, M.A. Golberg & Y.C. Hon, The
MFS and quasi-Monte Carlo method for diffusion equations, Int. J. Num.
Meth. Eng. 43,1421-1435, 1998)
ˆ 
u p ( P)  ˆ G( P, Q;  ) f ( P)dv, 

(Requires no meshing if ˆ = circle or sphere)
f
• Radial Basis Function Approximation of
• 7/7/2015
Others
6
The Method of Particular Solutions
Assume that
f (x)  fˆ (x)
and that we can obtain an analytical solution u
 p to
uˆ p  fˆ (x).
(6)
Then
u p  uˆ p .
To approximate f by f we usually require fitting the given
data set
x 
N
i 1
of pairwise distinct centres with the imposed
conditions
f (x)  fˆ (x),
7/7/2015
1  i  N.
7
The linear system

N

f (xi )   ai xi  x j ,
i 1
1 i  N,
(7)
is well-posed if the interpolation matrix is non-singular

A   xi  x j

Once f in (6) has been established,
1i  N
N
u p   ai i
(8)
i  i
(9)
i 1
where
and
7/7/2015


i   x  xi ,


i   x  xi .
8
Compactly Supported RBFs
Let : R  R be a continous function with  (0)  0. If xi , let


i xi    x  xi ,
where  is the Euclidean norm. Then i is called the RBF.
References
• Z. Wu, Multivariate compactly supported positive definite radial
functions, Adv. Comput. Math., 4, pp. 283-292, 1995.
• R. Schaback, Creating surfaces from scattered data using radial basis
functions, in Mathematical Methods for Curves and Surface,
eds. M. Dahlen, T. Lyche and L. Schumaker, Vanderbilt Univ. Press,
Nashville, pp. 477-496, 1995
• W. Wendland, Piecewise polynomial, positive definite and compactly
supported RBFs of minumal degree, Adv. Comput. Math., 4, pp 389396, 1995.
7/7/2015
9
References
• C.S. Chen, C.A. Brebbia and H. Power, Dual receiprocity method
using compactly supported radial basis functions, Communications in
Numerical Methods in Engineering, 15, 1999, 137-150.
• C.S. Chen, M. Marcozzi and S. Choi, The method of fundamental
solutions and compactly supported radial basis functions - a meshless
approach to 3D problems, Boundary Element Methods XXI, eds. C.A.
Brebbia, H. Power, WIT Press, Boston, Southampton, pp. 561-570,
1999.
• C.S. Chen, M.A. Golberg, R.S. Schaback, Recent developments of the
dual reciprocity method using compactly supported radial basis
functions, in: Transformation of Domain Effects to the Boundary, ed.
Y.F. Rashed, WIT PRESS, pp183-225, 2003.
• M.A. Golberg, C.S. Chen, M. Ganesh, Particular solutions of the 3D
modified Helmholtz equation using compactly supported radial basis
functions, Engineering Analysis with Boundary Elements, 24, pp. 539547, 2000.
7/7/2015
10
Wendland’s CS-RBFs
Define
n

(
1

r
)
, 0  r  1,
n
(1  r )   
r  1.
 0,
For d=1,
(10)
  (1  r )   C 0
  (1  r ) 3 (3r  1)  C 2
  (1  r ) 5 (8r 2  5r  1)  C 4
For d=2, 3,
F
o
r
7/7/2015
  (1  r ) 2 C 0
  (1  r ) 4 (4r  1) C 2
  (1  r ) 6 (35r 2  18r  3) C 4
  (1  r )8 (32r 3  25r 2  8r  1) C 6
11
Globally Supported RBFs
φ=1+r
7/7/2015
  r 2  c2
12
Compactly Supported RBFs
  (1  r )2
7/7/2015
  (1  r ) 4 (4r  1)
13
Compact support cut-off parameter (scaling factor)

7/7/2015
14
Analytic Particular Solutions L=  in 2D
r
 

4

r  r 
1    4  1 , r   ,
        

0,
r  .

1  d  d 
    r  ,
r  dr  dr 
in 2D,
 d  r 
 r  r

r      =  r 1    4  1 dr
    
 dr    
4r 7 5r 6 4r 5 5r 4 r 2
 5  4  3  2   A,
r  .
7
2

2
2
4
7/7/2015
15
 4r 6 5r 5 4r 4 5r 3 r

r
   =   5  4  3  2   C1  dr
2

2
2
 
 7

4r 7
5r 6
4r 5 5r 4 r 2 A


 3  2    B,
r  .
5
4
49 12
5 8
4 r
Choose A= B = 0, we have
 4r 7
5r 6
4r 5 5r 4 r 2

 3  2  , r  ,
r 
5
4
   =  49 12
5 8
4
  
C ln(r )  D,
r  ,

(*)
where C and D are to be determined by matching  and ' at r   .
7/7/2015
16
Note that
d  r   4r 6 5r 5 4r 4 5r 3 r
  =  5  4  3  2  , r  ,
dr     7
2

2
2

C

,
r 

r
4 6 5 5 4 4 5 3  C
For r   ,
 4 3  2 
5
7
2

2
2 
 C
2


 C
14 
14
From (*), we have
7/7/2015
529 2  2
D

ln 
5880 14
17
 4r 7
5r 6
4r 5 5r 4 r 2

 3  2  , r  ,

5
4
5 8
4
 r   49 12
 =
529 2  2  r 
  

ln   ,
r  ,

5880 14   

7/7/2015
18
Example in 2D
7/7/2015
19
7/7/2015
20
7/7/2015
21
Example 2D
5 2
 y 
u ( x, y ) 
sin( x) cos 
,
4
 2 
 y 
u ( x, y )  sin( x) cos 
,
 2 
( x, y)  ,
( x, y )  .
1
1
0.5
0.5
0
0
-0.5
-0.5
-1
-1
-1
-0.5
0
0.5
1
10,000 uniform grid points
7/7/2015
-1
-0.5
0
0.5
1
22
Sparse matrix for uniform grid points.
7/7/2015
23
 r  r 
 1    4    1
       
4
CS-RBF used:
MFS: Fictitious circle with r = 4.
Interpolation points: 100x100 uniform grid points
7/7/2015
α
RMSE
0.10
3.76E-4
561,013
1.65
0.20
1.55E-5
2,171,057
3.36
0.25
8.43E-6
3,376,025
5.32
NZ
C PU (sec)
24
Analytic Particular Solutions L=  in 3D
Recall
r
 

Since
4

r  r 
1    4  1 , r   ,
        

0,
r  .

1
 2
r
 d  2 d 
 dr  r dr  ,


(11)
in 3D,
we have
r2
r4
2r 5
5r 5
r7
 r   6  2 2  3 3  16 4  14 5 , r  
   
  
2 3

,
r  .

14 42r
7/7/2015
25
Numerical Example in 3D
Consider the following Poisson’s problem
u( x, y, z)  3 cos( x) cos( y) cos( z), ( x, y, z) ,
u( x, y, z)  cos( x) cos( y) cos( z), ( x, y, z) .
Physical Domain
  
0.5
0.25
0
-0.25
-1
-0.5
0.5
0.25
0
7/7/2015
1
0
-0.25
-0.5
26
4
We choose   1  r  (4r  1) to approximate the forcing term.
To evaluate particular solutions, we choose 300 quasi-random points
in a box [-1.5,1.5]x[-0.5,0.5]x[-0.5,0.5]. The numerical results are
compute along the x-axis with y=z=0.
8
Relative Errors (%)
7
6
 = 0.7
5
4
3
 = 1.0
 = 1.4
2
1
0
-1.0
-0.5
0.0
0.5
1.0
1.5
X Axis
7/7/2015
The effect of various scaling factor α
27
Modified Helmholtz Equation in 3D
n

r
1  d 2 d 
1   p (r ), 0  r   ,
2
r




  

2 
r  dr
dr 

0,
r  .

j
w(r )
d
 w
j
Let (r ) 
, r  0,  (0)  lim j   , j  0, 1, 2.
r 0 dr  r 
r
1
r2
7/7/2015
2
 d 2 d  1 d w
 r

 dr
dr  r dr 2
(15)
(16)
(17)
28
Hence, (15) is equivalent to
n
 
r r
d w
r 1   p  ,
2
 w  
 
dr 2

0,

2
0  r  ,
r  .
(18)
The general solution of (18) is of the form
 Ae  r  Be r  q (r ), 0  r   ,
w(r )  
 r
r
Ce

De
,
r  .

(19)
q(r) can be obtained by the method of undetermined coefficients,
or by symbolic ODE solver (MATHEMATICA or MAPLE).
A,B,C and D in (19) are to be chosen so that  in (16) is twice
differentiable at r = 0 and 
7/7/2015
29
Theorem 1. Let w be a solution of (18) with w(0)=0. Then 
defined by (16) is twice continuously differentiable at 0 with
 (0)=w'(0),  '(0)=0, ''(0)=[s2 w'(0)+p(0)]/3.
Furthermore,  (r) satisfies (15) as limr→0+

A  B  q (0)  0

Ae    Be   q ( )  Ce    De 

 Ae    Be   q ' ( )  Ce    De 

(20)
Choose D = 0. Consequently, we get
7/7/2015
A  [ B  q ( 0)]


e   ( q ' ( )  q ( )]

 B
2

2 

C

B
(
e

1
)

q
(

)
e
 q ( 0)


(21)
30
Hence, the particular solution Φ is given by

 s( 2 B  q ( 0)  q ' ( 0),
r  0,

 Ae  sr  Be sr  q ( r )
( r )  
,
0  r  ,
r

 sr
Ce

,
r  .

r

(22)
Notice that for r > α and large wave number λ
Ce  r e ( r ) q '( )  q ( ) q  e  ( r )  q (0)e  r 


r
2r
r
 0 for r   .
7/7/2015
31
Example
The general solution of
2
d 2w
r

2
 ,
2   w  r 1 

dr

0 r 
is given by
w(r ) 
4  r2 2  6r  2r 2 2  r 32
4 2
 Ae  r  Be r
Hence,
q (r ) 
4  r2 2  6r  2r 2 2  r 32
4 2
A,B,C can be obtain from (21).
7/7/2015
32
4
r  r


For  (r )  1    4  1 ,

    
1800 1 
 60
q (r )   6 3  8 5  r  4 2  6 4  2 
 



 
480
2880
300 
 240 1400  3  10
 r  4 3  6 5  r  2 2  4 4 
 
 
 
 
2
120 
15 5
4 6
 20
r  2 3  4 5  2 4 r  2 5 r
 
  

4
7/7/2015
33
Numerical Results
Consider
   400I  u  f ,
u  g,
in ,
on .
(23)
(24)
  ( x, y, z)  R3: H( x, y, z)  1 with
2
2

3 
3  2 2
H ( x , y , z)  min x   ,  x     y  z
4 
4 

7/7/2015
34
We choose f and g such that the u(x,y,z)=ex+y+z /400 is the
exact solution of (23)-(24).
To evaluate particular solutions, we choose N=400 quasirandom points . We choose the CS-RBFs
2
r

 (r )   1  
 
7/7/2015
35
Error estimates for various compact support cut-off parameter

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
7/7/2015
||u-uN ||
2.2864E-02
1.6194E-02
9.7795E-03
6.4514E-03
4.5061E-03
3.8208E-03
3.3006E-03
2.9089E-03
2.6375E-03
CPU-time (sec.)
01.40
04.43
07.48
10.63
13.71
16.98
20.53
24.08
27.60
36
Multilevel Interpolation
Given a set of X scattered points, we decompose X into a nested
sequence
X1  X 2    X M  X
M subsets


X k  x1( k ) ,, x N( kk)  X , 1  k  M .
Algorithm:
S1 | X 1  f | X 1 ,
Nk

Sk ( x)   c(j k )k x  x (j k )
S2 | X 2  ( f  S1 )| X 2 ,
j 1


M 1
S M |X M  ( f 
7/7/2015
S
k 1
k
)| X M .
S
1
 S2  S M | X  f | X
37
The basic idea is to set α1 relatively large with few interpolation
points, and to let the αk decrease as k increases with more points.
Reference:
M.S. Floater, A. Iske, Multistep scattered data interpolation using compactly
supported radial basis functions, J. Comp. and Appl. Math., 73, 65-78, 1996.
30 interpolation points
100 interpolation points




7/7/2015


38
300 interpolation points

7/7/2015

39
Numerical Results
u  2e x  y ,
( x, y)  D,
u  e x  y  e x cos y,
( x, y) D,
where D is the Oval of Cassinii.
0.4
0.2
-1
-0.5
00
-0.2
0.5
1
-0.4
7/7/2015
40
α/1.5, 1.0, 0.6, 0.2/ n/30, 60, 200, 400/
7/7/2015
x
y
Numer.
Exact
Abs. Error
0.00
0.00
1.99994
2.00000
0.000061
-0.63
0.00
3.74097
3.74098
0.000012
1.34
0.00
7.65247
7.65261
0.000028
0.17
0.17
2.17206
2.35207
0.000082
0.00
0.20
1.79712
1.79707
0.000052
-0.37
0.37
1.11578
1.11594
0.000156
-1.34
0.00
0.5228
0.52270
0.000130
41
For time-dependent problems, we consider two
approaches to convert problems to Helmholtz
equation
• LAPLACE TRANSFORM
• FINITE DIFFERENCES IN TIME
ALSO POSSIBLE
• OPERATOR SPLITTING (RAMACHANDRAN AND
BALANKRISHMAN)
7/7/2015
42
(HEAT EQUATION)
Consider the BVP
u( P, t )  ut (P, t )  f ( P, t ), P  D  Rd , d  2,3
u ( P, t )  g ( P, t ), P  D, t  0
u ( P,0)  h( P,0), P  D
(25)
(26)
(27)
where D is a bounded domain in 2D and 3D.
Let

uˆ ( P, s)   est u( P, t )dt
0
(28)
Then uˆ ( P, s) satisfies
uˆ ( P, s)  suˆ ( P, s)  fˆ ( P, s)  h( P)  M ( P, s)
uˆ ( P, s)  gˆ ( P, s), P  D
7/7/2015
(29)
(30)
43
(WAVE EQUATION)
Consider BVP
u ( P, t )  utt ( P, t ), P  D, t  0
u ( P, t )  g ( P, t ), P  D, t  0
u ( P,0)  u0 ( P), ut ( P,0)  v0 ( P)
(31)
(32)
(33)
Then uˆ ( P, s) satisfies
uˆ ( P, s)  s 2uˆ ( P, s)  su0 ( P)  v0 ( P)
uˆ ( P, s)  gˆ ( P, s), P  D
(34)
(35)
Similar approach can be applied to hyperbolic-heat
equation and heat equations with memory
7/7/2015
44
(HEAT EQUATION)
Let tn  n , n  0. For tn  t  tn1
u( P, t )  u( P, tn1 )  (1   )u( P, tn )
u( P, t )  u( P, tn1 )  (1   )u( P, tn )
and
ut (P, t )  [u(P, tn1 )  u( P, tn )]/ 
Then vn ( P)  u( P, tn ) satisfies
vn1  vn1 /   vn /   (1  )vn /   f n /   mn (P)
For   1 (Rothe's Method)
vn1  vn1 /   vn /   f n
For  1/2 (Crank- Nicholson)
vn1  2vn1 /   2vn /   vn  2 f n  mn (P)
7/7/2015
(36)
(37)
(38)
(39)
(40)
(41)
45
(J. Su & B. Tabarrok, A time-marching integral equation method for unsteady
state problems, Comp. Meths. Appl. Mech. Eng. 142, 203-214, 1997)
(WAVE EQUATION)
utt  (un1  2un  un1 ) /  2
(41)
Then vn  un satisfies
vn1  vn1 /  2  (vn1  2vn ) /  2  (1  )vn1
(42)
CONVECTION-DIFFUSION EQUATION


u  V  u  ut (V  velocityfield)
(43)
(44)
ut  (un 1  un 1 ) / 2

vn1  (1  )vn1  (vn1  vn1 ) / 2  V  vn
(45)
Similar approach works for non-linear equation
u( P, t )  ut ( P, t )  f ( P, u, u)
7/7/2015
(46)
46