Eurocode 1: Actions on structures

Download Report

Transcript Eurocode 1: Actions on structures

EN1994-1-2:2003
Eurocode 4: Design of composite
steel and concrete structures–
Part 1–2: General rules –
Structural fire design
Annex F [informative]:
Calculation of moment
resistances of partially
encased steel beams
connected to concrete
slabs
www.structuralfiresafety.org
Content
General
Basis of Design
Material Properties
Basic requirements
Actions
Material design values
Verification methods
Structural steel
Concrete
Reinforcing steel
Tabulated data
Annex B
Stress-strain relationships
for siliceous concrete
Mechanical &
thermal properties
Partially encased beams
Composite columns
Unprotected / protected
composite slabs
Design Procedures
Simple Models
Composite beams
Composite columns
Constructional Details
Composite beams
Composite columns
Connections
Advanced Models
Annex I
Planning & evaluation of
experimental models
Annex A
Stress-strain relationships
for structural steel
General aspects
Thermal response
Mechanical response
Validation
Annex C
Stress-strain relationships
for concrete adapted to
natural fires
Annex D
Fire resistance of
unprotected slabs
Annex E
Moment resistance of
unprotected beams
Annex F
Moment resistance of
partially encased beams
Annex G
Simple models for partially
encased columns
Annex H
Simple models for
concrete filled columns
www.structuralfiresafety.org
www.structuralfiresafety.org
F.1(1) Flat slab system
The section of concrete slab
is reduced as follows:
regardless
fire classes
fc/γM,fi,c
beff
Compressive
stress in
concrete
Tensile
stress in
steel
-
ef
+
hc,h
hc,fi
hc
h
ew
bc
fay/γM,fi,a
fay,x/γM,fi,a
x
krfry/γM,fi,s
b
kafay/γM,fi,a
Table F.1
Standard fire resistance
Slab reduction hc,fi (mm)
R30
10
R60
20
R90
30
R120 R180
40
55
www.structuralfiresafety.org
F.1(2-3) Other slab systems
trapezoidal profiles
transverse to beam
re-entrant profiles
transverse to beam
hc,fi
hc,fi
hc,fi,min
hc,fi ≥ hc,fi,min
prefabricated
concrete planks
Table F.1
applies
trapezoidal profiles
parallel to beam
hc,fi
hc,fi,min
hc,fi ≥ hc,fi,min
Joint between precast
elements which is unable to
transmit compression stress
hc,fi
heff
For calculation
Annex D
refer to
www.structuralfiresafety.org
F.1(4) Active width of upper flange (b - 2bfi)
(b – 2bfi) varies with fire classes.
Yield strength of steel is taken
equal to fay/γM,fi,a.
fay/γM,fi,a
ef
bfi
bfi
ew
bc
b
Table F.2
Standard fire
resistance
R30
R60
R90
R120
R180
Width reduction bfi of
upper flange
(ef / 2) + (b – bc) / 2
(ef / 2) + (b – bc) / 2 + 10
(ef / 2) + (b – bc) / 2 + 30
(ef / 2) + (b – bc) / 2 + 40
(ef / 2) + (b – bc) / 2 + 60
www.structuralfiresafety.org
F.1(5) Web division
Web is divided into two parts:
h
ew
bc
x
hh
Top part
hl
Bottom part
b
hl are given for different fire classes:
For h/bc ≤ 1 or h/bc ≥ 2
For 1< h/bc < 2
a1 a2ew
hl 

bc
bc h
hl is given directly
in Table F.3
Parameters a1
& a2 are given
in Table F.3
 Next
www.structuralfiresafety.org
Table F.3 Bottom part of web: hl
Standard fire
resistance
a1
[mm2]
3 600
9 500
14 000
23 000
35 000
R30
R60
R90
R120
R180
ef
h
h/bc ≤ 1
a2
[mm2]
0
20 000
160 000
180 000
400 000
hl,min
[mm]
20
30
40
45
55
a1
[mm2]
3 600
9 500
14 000
23 000
35 000
h/bc ≥ 2
a2
[mm2]
0
0
75 000
110 000
250 000
hl,min
[mm]
20
30
40
45
55
a1 a2ew
hl 

bc
bc h
ew
bc
hh
x
hl
b
hl,min ≤ hl ≤ hl,max
= h – 2ef
www.structuralfiresafety.org
Table F.3 Bottom part of web: hl
Standard fire
resistance
1< h/bc < 2
hl,min
[mm]
R30
3600
bc
20
R60
e 
9500
h

 20000 w  2 
bc
bc h 
bc 
30
R90
e
e 
14000
h

 75000 w  85000 w  2 
bc
bc h
bc h 
bc 
40
R120
R180
e
e 
23000
h

 110000 w  70000 w  2 
bc
bc h
bc h 
bc 
e
e 
35000
h

 250000 w  150000 w  2 
bc
bc h
bc h 
bc 
45
55
hl,min ≤ hl ≤ hl,max
= h – 2ef
www.structuralfiresafety.org
F.1(7-8) Section yield strength
fay/γM,fi,a
Top web
h
ef e
w
bc
hh
x
Bottom flange
Standard fire
resistance
R30
R60
R90
R120
R180
Bottom web
hl
f ay, x
kafay/γM,fi,a
The reduced yield
strength depends
on distance x:

x
 f ay 1  (1  k a ) 
hl 

a0 = 0.018 ef + 0.7
Reduction factor ka
ka,min
ka,max
[1.12 – 84 / bc + h / 22bc] a0
[0.21 – 26 / bc + h / 24bc] a0
[0.12 – 17 / bc + h / 38bc] a0
[0.1 – 15 / bc + h / 40bc] a0
[0.03 – 3 / bc + h / 50bc] a0
0.5
0.12
0.06
0.05
0.03
0.8
0.4
0.12
0.10
0.06
www.structuralfiresafety.org
F.1(9) Yield strength of rebars
Yield strength decreases with temperature.
Reduction factor kr depends on fire class & position of
rebar:
kr  (u a3  a4 ) a5 / Am / V
h bc
2h + bc
1
u
1 / ui  1 / usi  1 /(bc  ew  usi )
ew
us
h
bc
3
12
u2
u1,3
www.structuralfiresafety.org
Standard fire
resistance
R30
R60
R90
R120
R180
a3
a4
a5
kr,min
kr,max
0.062
0.034
0.026
0.026
0.024
0.16
-0.04
-0.154
-0.284
-0.562
0.126
0.101
0.090
0.082
0.076
0.1
1
F.1(11) Shear resistance of web
May be verified using the
distribution of the design yield
strength according to (7)
If Vfi,d ≥ 0.5Vfi,pl,Rd
Resistance of reinforced
concrete may be
considered
www.structuralfiresafety.org
www.structuralfiresafety.org
Stress in
concrete
F.2 Yield strength of rebars
3b
uh
ul
+
ef
-
bc
h
Stress
in steel
Reduction factor
ks depends on:
Fire classes
Position of rebars
Table F.6
www.structuralfiresafety.org
hc
Bottom bars
u = ui
Top bars
u = hc - uh
hfi
b
Standard fire
resistance
R30
R60
R90
R120
R180
Reduction factor
ks
1
0.022 u + 0.34
0.0275 u – 0.1
0.022 u – 0.2
0.018 u – 0.26
ks,min
ks,max
0
1
F.2(2) Upper flange
F.1(4) applies
as follows:
fay/γM,fi,a
ef
bc
h
hfi
b
Active width of upper flange:
(b – 2bfi) varies with fire classes.
Yield strength of steel is taken
equal to fay/γM,fi,a.
Standard fire
resistance
R30
R60
R90
R120
R180
Width reduction bfi of
upper flange
(ef / 2) + (b – bc) / 2
(ef / 2) + (b – bc) / 2 + 10
(ef / 2) + (b – bc) / 2 + 30
(ef / 2) + (b – bc) / 2 + 40
(ef / 2) + (b – bc) / 2 + 60
www.structuralfiresafety.org
F.2(3) Reduced concrete section
3b
Section is reduced as shown.
Compressive strength:
bc
h bc,fi
hfi
bc,fi
fc/γM,fi,c
b
Standard fire
resistance
R30
R60
R90
R120
R180
hfi
[mm]
≥ 25
165 – 0.4bc – 8(h / bc) ≥ 25
220 – 0.5bc – 8(h / bc) ≥ 45
290 – 0.6bc – 10(h / bc) ≥ 55
360 – 0.7bc – 10(h / bc) ≥ 65
not varying with
fire classes
Table F.7
bc,fi
[mm]
≥ 25
60 – 0.15bc ≥ 30
70 – 0.1bc ≥ 35
75 – 0.1bc ≥ 45
85 – 0.1bc ≥ 55
www.structuralfiresafety.org
F.2(4-5) Yield strength of rebars
F.1(9) applies
as follows:
Reduction factor kr depends on fire
class & position of rebar:
kr  (u a3  a4 ) a5 / Am / V
2h + bc
3b
h
3
12
u2
1
u
1 / ui  1 / usi  1 /(bc  ew  usi )
bc
ew
us
u1,3
www.structuralfiresafety.org
b
h bc
Standard fire
resistance
R30
R60
R90
R120
R180
a3
a4
a5
kr,min
kr,max
0.062
0.034
0.026
0.026
0.024
0.16
-0.04
-0.154
-0.284
-0.562
0.126
0.101
0.090
0.082
0.076
0.1
1
F.2(6-7) Shear resistance
Assumptions:
Shear force is transmitted by
steel web, which is neglected
when calculating the hogging
bending moment resistance.
If Vfi,d ≥ 0.5Vfi,pl,Rd
Resistance of reinforced
concrete may be
considered
www.structuralfiresafety.org
www.structuralfiresafety.org