Transcript Document
The USC Microbial Observatory D. Caron, J.Fuhrman: P. Countway, M. Brown, I. Hewson, P. Savai, A. Schnetzer, S. Moorthi, J. Rose, J. Steele, I. Gilg, M. Schwalbach, R. Schaffner, E. Brauer, L. Farrar, B. Strachan, P. Vigil …at the San Pedro Ocean Time-series Station Department of Biological Sciences University of Southern California 3616 Trousdale Parkway, AHF 301 Los Angeles, CA 900089-0371 http://www.usc.edu/dept/LAS/biosci/Caron_lab/index.html T. Michaels: B. Jones, W. Berelson M. Neumann, R. Schimmoeller E. Caporelli, J. Herndon, X. Hernandez, G. Smith The USC M.O. Broad Objectives/Directions Prokaryote and Eukaryote Discovery Diversity: Short and Long(ish) Time Scales Characterizing Distributions Defining Relationships among Microbial Taxa Autecological studies USC Microbial Observatory and San Pedro Ocean Time Series N 20 km Temperature °C Nitrate (µM) Phosphate (µM) http://wrigley.usc.edu/data_sys/ Silicate (µM) Chlorophyll Oxygen (ml/l) USC Microbial Observatory and San Pedro Ocean Time Series Temperature Oxygen Chlorophyll a Bacteria by FCM by EFM Viruses by EFM (SYBR Green) Sept 2000 Dec 2003 USC Microbial Observatory and San Pedro Ocean Time Series Prochlorococcus FCM Synechococcus FCM Picoeukaryotes FCM Aloricate ciliates Dinoflagellates Diatoms Sept 2000 Dec 2003 Whole Bacterial Community Fingerprints Amplified Ribosomal Intergenic Spacer Analysis (ARISA) backed by Clone Libraries for ID. Phylogenetic resolution near “species” level Fluorochrome 16S rRNA gene ARISA PCR primers ARISA PCR Intergenic Spacer, Variable Length 23S rRNA gene Run products on a fragment analyzer. Each peak represents an “Operational Taxonomic Unit.” Reference: Fisher and Triplett 1999, others... PCR from these primers to make Clone Libraries to identify ARISA OTUs 16S sequence provides ID, ITS sequence provides length and very high resolution phylogenetic information (ca. “strain” level). SAR11 cluster (in San Pedro Channel) Microdiversity - The rule rather than the exception. ITS shows clusters well. Populations are not clonal. 16S ITS 0.1 SAR 11 cluster alone - we estimate ~800 distinguishable sequence types at our coastal study site (Chao 1)- clustered into ~10 groups (ecotypes?) 0.1 284 clones 138 from SPOTS Annual Bacterial Community Reassembly with Shahid Naeem, Columbia University Discriminant Function Analysis ‘Clockfaces’ - Months are like hours on the clock. Chl max Radii represent discriminant function of taxa (a function of community composition). Central line: mean Dashed lines: range over 3 years 1-50 51-100 ARISA Bins 100-150 T-RFLP Eukaryote Seasonal Pattern USC M.O.HaeIII Digest Typically 40-70 fragments/sample. USC MO Chl a Max: Protistan HaeIII T-RFLP 350000 300000 250000 200000 150000 100000 50000 Oct-03 Jul-03 0 61 May-03 79 9 12 Jan-03 8 14 4 18 8 19 Aug-02 8 21 1 23 Apr-02 1 26 Fra 77 gm 2 292 4 en 32 tS 0 34 ize (bp ) Important tool for Correlating to ARISAs (prokaryote community structure) Jan-02 Oct-01 9 35 5 37 Jul-01 9 44 8 47 Apr-01 4 49 8 50 Jan-01 0 59 6 60 T-RFLP Similarity Matrix Tool Results: RDP II website HaeIII TRFs Date (74) Jan (69) Apr 0.53 (64) May 0.54 0.59 (89) Jul 0.67 0.58 0.63 (44) Oct 0.55 0.50 0.44 Jan Apr May Jul Oct 0.53 0.54 0.67 0.55 0.59 0.58 0.50 0.63 0.44 0.56 0.56 Bacterial OTU Protistan OTU 643 640 646 517 940 607 e76 e135 e129 e500 e276 e302 e362 e335 e481 e130 e73 e74 765 705 e131 e281 475 526 800 478 559 682 e230 655 e126 e502 e198 e182 e272 e493 e496 e341 e338 e498 e485 e488 e597 547 619 770 487 e233 1030 e192 855 e589 610 631 508 532 790 592 805 740 985 1180 538 529 e268 e492 e179 e177 e301 760 e262 e454 e459 e602 481 835 e68 691 e94 e231 e61 e504 571 795 e237 e487 433 649 685 745 850 785 885 e282 700 e325 e327 e196 e195 e331 e228 e402 661 664 1050 568 e501 628 e175 400 424 421 e128 652 e300 472 715 725 775 418 676 679 755 825 469 e261 e324 e598 e451 e600 e603 613 e503 493 e224 e453 e595 905 e274 e336 e340 e497 960 e275 e450 e591 541 625 e181 945 e132 e136 e229 520 616 780 e346 667 e283 e333 e232 710 e332 e236 e234 e486 e235 e277 e339 e590 e606 Bacterial - Protistan Relationships •Bacterial and Protistan OTU usually cluster within domains (e.g. protist with protist) Protistan OTU Protistan OT 0.1 •But certain Bacterial and Protistan OTU covary most closely with each other 0.1 Relates Prokaryotic-Eukaryotic Ecology 0.4 Kendall Rank Similarity 0.5 0.6 0.7 0.8 0.9 1.0 547 e481 619 e130 770 e73 487 e74 e233 765 705 1030 e192 e131 855 e281 e589 475 610 526 800 631 478 508 559 532 682 790 e230 592 655 805 e126 740 e502 985 e198 1180 e182 538 e272 529 e493 e268 e496 e492 e341 e179 e338 e177 e498 e301 e485 760 e488 e262 e597 e454 547 e459 619 643 e602 770 640 481 487 835 e233 646 e68 1030 517 691 e192 855 e94 940 e589 e231 607 610 e61 e76 631 e504 508 643 571 e135 532 795 640 e129 790 e237 e500 592 646 e487 805 e276 433 517 740 649 e302 985 940 685 1180 e362 745 607 538 e335 850 e76 529 785 e481 e268 885 e135 e492 e130 e282 e129 e179 e73 700 e177 e500 e325 e74 e301 e327 e276 760 765 e196 e262 e302 705 e195 e454 e331 e459 e131 e362 e228 e602 e281 e335 e402 481 e481 475 661 835 664 e68 526 e130 691 1050 800 e73 e94 568 e501 478 e231 e74 e61 628 559 765 e175 e504 682 571 400 705 795 e230 424 e131 e237 421 655 e487 e128 e281 e126 433 652 649 475 e502 e300 685 472 526 e198 745 715 Rank correlation of occurrence of OTU Apusomonadidae Polycystinea Streptophyta Euk; env. Choanoflagellida Euglenozoa Apicomplexa Perkinsea Glaucocystophyceae Haptophyceae Ichthyosporea Cryptophyta Cercozoa Stramenopiles Phylogenetic breakdown of Euks in 18S libraries from the time-series. Acantharea Dinophyceae Chlorophyta M.O. 2001 ARB Tax. Fungi Ciliophora 2,224 clones (400 – 650 bp ea.) What about species diversity? Protistan taxa are morphologically defined. You might think that would be an advantage, and yet… -Complexity of taxonomy(ies) multiple fixation procedures multiple analytical procedures diverse taxonomic characters -Deficiencies of taxonomy small species (few characters) morphologically amorphous species convergent evolution -Demands of ecological research high sample number complexity of natural assemblages There is a need to develop practical guidelines for defining OTUs for protistan taxa based on rDNA sequence information. Our approach: • • • • Select complete 18S sequences of ‘well-defined’ (i.e. morphologically-defined) protistan species from GenBank. Perform all pairwise comparisons of full-length sequences. • examine intra-species (strain-strain) sequence variability. • examine inter-species sequence variability. Attempt to determine logical demarcation (% similarity) for species-level distinction. Apply criteria to environmental sequence databases for assessing microbial eukaryote diversity. Caveats: -This will not resolve the issue of the ‘species concept’. -Ultimately, multiple gene sequences will provide identity. Consequences of varying percent similarity for OTU calling. (application to real data) 450 99 Results for 970 environmental 18S clone sequences from a sample in the Coastal western North Atlantic Number of Taxonomic Units 400 350 300 98 250 95%, 165 OTUs 200 97 96 95 94 93 92 91 90 89 88 86 87 85 150 100 50 30 0 20 40 40 45 50 55 60 65 70 60 Percent Similarity 75 80 80 100 200 200 Frequency of Taxonomic Unit 180 ‘Taxon-level’ distinction ≈1200 18S clones (Single date, 6 depths, USC M.O. site) 180 160 160 140 140 120 100 120 80 100 60 80 40 20 60 0 1 40 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 20 0 1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 Taxonomic Units *Large Euk diversity (488 OTUs; 95% similarity: pairwise alignments). *Most OTUs are rare (large number of ‘background’ of taxa). Study in Coastal N. Atlantic 72-hr bottle incubation Natural light; ambient temp. 70 Global distribution or Endemism? Phylotype Abundance 60 50 970 clones analyzed. 165 Total phylotypes (95%). 40 68% (108 out of 165) observed at only one sampling time. 30 Only 18% observed at all 3 sampling times. 20 10 0 1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 Phylotype Rank Countway et al. (2005), GenBank accession AY937465-AY938434 Target Organisms – Caron Lab Phaeocystis (Haptophyte) Lingulodinium (Dinoflagellate) The Daily Breeze: May 12, 2002 Pseudonitzschia (Diatom) Chrétiennot-Dinet et al., 1995 Ostreococcus (Chlorophyte) Ostreococcus T-RFLP signature at the Chl a Max: July 2001 Percent of total amplified DNA 9.8% 10.7% Cryptophytes 4% Stramenopiles 2% Haptophytes 4% 11.3% Other Chlorophytes 9.1% Dinoflagellates 38.2% Ostreococcus 9.1% Unclass. Eukaryotes 14.5% Ciliates 20.0% Caron, Countway & Brown (2004) Comparison to flow cytometry… In parting, two popular microbial myths… (and their corollaries) The ‘age of discovery’ in oceanography is over. (if you believe this, you’ve come to the wrong workshop) C1: We have accurate estimates of protistan diversity. We know a lot of common morphotypes, but... (There is genetic diversity we don’t understand) (Relationship between morphology, sequence identity and physiology is poorly known; we lack ecological tools) We can forget about (or ignore) the species concept. C1: The ‘omes’ (genome, transcriptome, proteome, metabolome) will ‘tell all’. The species (however defined) is the evolutionary unit; not the gene, not the assemblage, not the community. The problem (sp. concept) is different for proks and euks.