Transcript Document

Charm Physics Results at BES and
Prospects at BESIII
BESIII is successor of
the previous successful BES.
Haibo Li
On behalf of BES Collaboration
Institute of High Energy Physics
International Workshop e+e- Collisions from  to y
February 27 - March 2, 2006,
Budker Institute of Nuclear Physics, Novosibirsk, Russia
2006-2-26
Haibo Li, IHEP, BES collaboration
1
Open Charm Production at BES
Tag one D meson in a selected tag mode.
Study decays of other D, (signal D)
22% tagging efficiency (<1% @ Y(4S) for B)
Absolute Charm Branching fractions
BESII had
small sample
of DD
#D0D0bar
#D+D-
9.6 pb-1
3.5104
2.8104
BESII
33 pb-1
0.12106
0.09106
CLEO-c(goal)
3 fb-1
10.8106
8.4106
BES III(goal)
20fb-1
72106
55106
Experiments
e+e- machines
Luminosity@
ECM=3770MeV
Mark III
Charm Mixing, DCS, and cosd impact naïve
interpretation of branching fraction analysis
extension of Phys.Lett.B508:37-43,2001 hep-ph/0103110
Gronau/Grossman/Rosner & hep-ph/0207165 Atwood/Petrov
See Asner & Sun, hep-ph/0507238
2006-2-26
Haibo Li, IHEP, BES collaboration
2
BESII Detector
VC: xy = 100 m
TOF: T = 180 ps
 counter: r= 3 cm
MDC: xy = 220 m
BSC: E/E= 22 %
z = 5.5 cm
dE/dx= 8.5 %
 = 7.9 mr
B field: 0.4 T
p/p=1.7%(1+p2) Haibo Li, IHEP,
z =BES
3.1collaboration
cm
2006-2-26
3
D Signal Reconstruction
∆E
In y(3770) rest frame:
E  ED - Ebeam
2
M ES  Ebeam
- pD2
D
e-
e+
Υ(4S)
MES
2006-2-26
Haibo Li, IHEP, BES collaboration
D
4
Single Tag D at BESII
BESII 33 pb-1
0
Single Tag D
D -  K  - -
D K 
 -
D-  KS0 K -
0
D  K  - - 
D-  KS0 -
D -  K  K - 
D-  KS0 - - 
0
0
S
0
 - 0
D K  

D-  KS0 - 0
-
K  - - 0
D K  
K  - -  Total 9 modes
D-    - -
N
0
D tag
2006-2-26
 7584  198  341
N D -  5321  149  160
tag
Haibo Li, IHEP, BES collaboration
5
Exclusive Semileptonic BF
Vcq

W+
D
Analysis Techniques
e+
Fit to Umiss
P, V
2
F
d  P G Vcq

2
dq
24 3
2
 
pP3 f p q 2
2
Decay rate
for D  P
B
Nsignal /  signal Nsignal /  Xe

Ntag /  tag
Ntag
Fit to MBC
• Reconstruct one hadronic D tag.
• Reconstruct a semileptonic
signal candidate from the
remaining tracks/showers.
• Fit kinematic variable Umiss
( = Emiss – |Pmiss| ) for the
missing neutrino of the signal.
2006-2-26
Latest
LQCD, PRL
94, 011601
(2005)
LQCD : shape & rate
precision~10%
Haibo Li, IHEP, correct:
BES collaboration
6
Absolute Semileptonic Branching fractions at BESII
Decay Modes
BR (%) BESII (33 pb-1)
BR (%) PDG
BR( D0  K -e e )
3.82  0.40  0.27
3.58  0.18
BESII 33 pb-1
BR(D0  K -    )
3.60  0.60  0.60
3.19  0.17
BR(D0   -e e )
0.33  0.13  0.03
0.36  0.06
PLB 608 24 (2005)
PLB 597 39 (2005)
BR(D0   -    )
0.38  0.31  0.10
BR(D  K e  e )
2.82  1.39  0.31
2.86  0.46
The Yellow region
are preliminary results
BR(D0  K 0 -e e )
2.60  1.04  0.27
1.8  0.8
BR( D  K 0e e )
8.95  1.59  0.67
6.6  0.9
BR(D  K 0    )
10.3  2.30  0.80
7.0  0.25
BR(D  K *0e e )
4.89  1.19  0.36
4.5  0.6
BR(D  K - e e )
3.46  0.75  0.26
4.1  0.8
0
*- 
 ( D 0  K -    )
 ( D   K    )
0
For extractions of ratios of
Vcd/Vcs and form factors
Br ( D 0   -    )
Br ( D 0  K -    )
2006-2-26
:
 0.11  0.10  0.03
( D 0  K - e  )
( D   K 0 e )
( D 0  K - e  )
Isospin test –
Puzzle in PDG
1.4  0.2
= 0.89  0.24  0.15
 1.00  0.05( stat )  0.04( sys) CLEO-c
 1.08  0.22( stat )  0.07( sys) BES-II
( D   K 0 e )
Haibo Li, IHEP, BES collaboration
7
Ratio of the D->K*e and D->Ke test of HQET
BESII 33pb-1 Preliminary:
 ( D 0  K * - e  e )
 0.74  0.37  0.04
0
- 
 ( D  K e e )
 ( D   K *0 e  e )
 0.55  0.17  0.02

0 
 ( D  K e e )
World average:
( D  K *l l )
 0.56  0.05
( D  Kl l )
LQCD, Quark model predict:
0.9 – 1.2 by Wirbel 1985, Isgur 1989
,Bernad 1991
New prediction: ISGW2 model with a small
axial form factor give a small BR(K*e) :
 0.54
2006-2-26
Haibo Li, IHEP, BES collaboration
8
Search for D+  l+v, + at BESII
33pb-1, BESII preliminary submitted to EPJc
BR( D   e  e )  2.01% @ 90%,
D+ +
BR( D      )  2.04% @ 90%,
BR( D     )
 0.062 0.012 0.003,
BR( D   K -   )
BR( D     )  (5.7  1.1  0.5) 10-3 ,
m(K+K-)
D+K--
Tagged D mass
2006-2-26
Haibo Li, IHEP, BES collaboration
9
fD+from Absolute Br(D+   at BESII
BESII
Tag D fully
reconstructed
PLB610,183(2005)
p
A  from another D ,
Compute missing mass2:
peaks at 0 for signal
S=3 B=0.33
MM 2  ( Ebeam - E )2 - (- PDtag  - P )2
.1
-4
BR( D      )  (12.2 -11

1
.
0
)

10
,
5.3
129
f D   (371-119
 25) MeV
BESII
-4
BR( D      )  (4.40  0.66-00..09
)

10
,
12
f D   (222.6  16.7 -32..48 ) MeV
2006-2-26
Haibo Li, IHEP, BES collaboration
CLEO-c
PRL,95
251801(2005 )
10
Measurements of the Cross Sections@3770MeV
•Unique event properties
BESII 33 pb –1, double tag
–Only DD not DDx produced
–Can get DoDo, D+D-, DsDs
Nucl. Phys. B 727395(2005):
0
 (e  e -  D 0 D ) obs  (3.47  0.32  0.21)nb
 (e  e -  D  D - ) obs  (2.46  0.33  0.20)nb
CLEO-c 56pb-1 : DT, PRL 95, 121801(2005):
BESII single Tag: PLB 603(2004)130
0
 ( D 0 D 0 )  (3.60  0.07-00..07
05 ) nb
10
 ( D  D - )  (2.79  0.07-00..04
)nb
 (e  e -  D 0 D ) obs  (3.58  0.09  0.31)nb
 (e  e -  D  D - ) obs  (2.56  0.08  0.26)nb
The double tag results are dominated by statistic error !
(+-)= 5.4 nb at 4 GeV
2006-2-26
+-))
Haibo
Li, IHEP,of
BES(
collaboration
R
(units
11
Rare decays from BESII
33pb-1 at BESII
BESII:
33pb-1
mode
Signal
Efficiency
Upper limits
PDG (2004
K0 e+e-
0
2.64%
5.710-4
1.110-4
 e+e-
0
0.64%
2.410-3
5.210-5
re+e-
0
4.32%
3.510-4
1.010-4
K*0 e+e-
1
2.06%
1.310-3
4.710-5
K-e+e
0
9.64%
2.510-4
1.210-4
K+e+e-
0
9.20%
2.610-4
2.010-4
-e+e
0
10.20%
2.410-4
9.610-5
e+e-
1
10.49%
4.110-4
5.210-5
K*-e+e
0
0.40%
6.210-3
N/A
K*+e+e-
0
0.39%
6.310-3
N/A
The signal region is clean!
experimentally, it is easy.
2006-2-26
LFV processes
Haibo Li, IHEP, BES collaboration
12
Single D production in huge J/y Decays at BESII
mDs
mDmD0
Background level is small!
58 millions J/y at BESII
J/y weak decays
J /   Ds- e  e , ( Ds   , K - K *0 )
J /   D - e  e , ( D -  K   - )
J /   D 0 e  e - , ( D 0  K  - , K 2 , K 3 )
J /   Ds- e  e  4.6 10-5
J /   D - e  e  1.110-5
J /   D 0 e  e -  9.2 10-6
BESII preliminary results
First look in J/y in the world!
2006-2-26
Haibo Li, IHEP, BES collaboration
13
BESIII Detector
Two rings, 93 bunches:
• Luminosity
1033 cm-2 s-1 @1.89GeV
6 1032 cm-2 s-1 @1.55GeV
Magnet: 1 T Super conducting
6 1032 cm-2 s-1 @ 2.1GeV
MDC: small cell & He gas
xy=130 m
sp/p = 0.5% @1GeV
dE/dx=6%
TOF:
T = 100 ps Barrel
110 ps Endcap
Muon ID: 9 layer RPC
EMCAL: CsI crystal
E/E = 2.5% @1 GeV
z = 0.6 cm/E
Data Acquisition:
Event rate = 3 kHz
Thruput ~ 50 MB/s
Trigger: Tracks & Showers
Pipelined; Latency = 6.4 s
The detector is hermetic for neutral and charged particle with excellent resolution ,PID,
and large coverage.
2006-2-26
Haibo Li, IHEP, BES collaboration
14
Charm Productions at BEPCII
Average Lum: L = 0.5×Peak Lum.; One year data taking time: T = 107s
Nevent/year = exp L T
Resonance
Mass(GeV)
CMS
Peak Lum.
(1033cm-2s-1)
Physics Cross
Section (nb)
Nevents/yr
J/y
3.097
0.6
3400
10  109
t
3.670
1.0
2.4
12  106
y(2S)
3.686
1.0
640
3.2  109
D0D0bar
3.770
1.0
3.6
18  106
D+D-
3.770
1.0
2.8
14  106
DsDs
4.030
0.6
0.32
1.0  106
DsDs
4.140
0.6
0.67
2.0  106
Huge J/y and y(2S) sample at BESIII;
Note: in this talk, all R&D study are based on 4 years’ Lum. for D and Ds ( 20 fb-1)
and one year’s Lum. for J/y (10 billion) and y(2S) (3.0 billion).
2006-2-26
Haibo Li, IHEP, BES collaboration
15
Absolute Charm Branching fractions at threshold at BESIII
(MBC) ~ 1.2-1.3 MeV, x2 with 0
 (E) ~ 7—10 MeV, x2 with 0
Single tags
Double tags
K K vs K K
D0->K-π+
Monte Carlo
Single tags
D+->K-π+π+
Monte Carlo
Independent of
L and cross
Section in a double tags measurements
# (K  - - ) Observed in tagged events
B( D  K   ) 
detection efficiency for (K  - - )  #D tags
-
Monte Carlo
2006-2-26

-
-
Haibo Li, IHEP, BES collaboration
16
Semileptonic decay and CKM Matrix at BESIII
d  D  P  
dq
2
Δ Vcq
Vcq
2

Vcq PP3
24
f  (q )
2
2
To find Vcs & Vcd need form factor
from theory at one fixed q2 point.
 Δτ 
 ΔB 
 ΔFF 

   D   

2τ
2FF
 2B 


 D
2

3
2
2
dVcd/Vcd
dVcd/Vcd1.7%
4%
D
D
Δτ Ds
Δτ D
 0.6%
τD
Form factor term come from theory (Lattice QCD).
Supposing ΔFF/FF ~3% , BESIII will get
BESIII:
Integrate Lumi.
20fb-1 DDbar
MC simulation
f  (q 2 ) 
ll




 1.0%
Well measured
dVcs/Vcs
dVcs/Vcs1.6%
11%
DD
τ Ds
f  (0)
2
1 - q 2 / mpole
l
l
K
Great contribution to
CKM Unitarity
K
Quark models, HQET, Lattice & other methods have all been invoked to calculate
form factor absolute normalizations. These calculations have been done
mostly at q2 =0 orBESIII
q2 =q2max. (i..e w=1, just like F in Vcb in B D* l)
2006-2-26
Haibo Li, IHEP, BES collaboration
17
Precision of fD(s) at BESIII
f D(s)
3 generation unitarity global fit:
f D(s)
hep-ph/0406184 CKMfitter group
Δ | Vcd |
 1.1%
| Vcd |
Δτ D
 0.6%
τD
With 20fb-1
at BESIII
Δ | Vcs |
 0.06%
| Vcs |
Δτ Ds
 1.0%
τ Ds
ΔB
 2%
B
 1 t D(s)
 
 2 tD
(s)

2
  1 B  2   | Vcd(s) | 
 

 
  2 B   | Vcd(s) | 



Δf D
 1.5% BESIII
fD
Δf Ds
 1.1% BESIII
f Ds
Challenge LQCD Prediction!
BESIII MC with 1 million Ds
2006-2-26
Haibo Li, IHEP, BES collaboration
18
2
input to 3 /γ:
B-  DK-, D Ks limited by uncertainty due to Dalitz plot
model currently 10-110
– Extract strong phase and study CP
violation by using CP tag.
– Study light scalar in Dalitz D decays
, k S-waves in D+  , K
CLEO II.V - D0KS+K*(892)-
m2(-) (GeV2)
–
D Dalitz Plot method
CP+ f0(980)
As Alex Bondar pointed out, CP tagged DKS
can be 10K in 10fb-1 y(3770) sample at BESIII,
it will give a uncertainty below 20on 3 /γ!
But note that the D0KS is dominated
by r and K* which are longitudinally polarized.
The most interesting events are accumulated near
the corner of the Dalitz, which have very soft Ks or
pion, this effect may affect the real efficiency on the CP- r(770)
DP, especially, have very low efficiency near
the kinematic limit of DP. We have to do MC simulation
m2(KS)RS (GeV2)
to test it at BESIII??
A. Bondar et. al hep-ph/0510246
2006-2-26
Haibo Li, IHEP, BES collaboration
19
Measurement of Strong Phase
I. Shipsey
Flavor mode
rD = 3.3 10-3
–cos dD ~ 10%
cos dD ~ 2% at BESIII
rD
2006-2-26
Haibo Li, IHEP, BES collaboration
20
Relative yield of charged and neutral D pairs at y(3770)
the resonance region (1)
From CLEO-c L = 55.8 pb-1 @ 3770 MeV:
f 
 (e  e -  D  D - )
 (e  e -  D 0 D 0 )
014
 0.776 0.024-00..006
Can phase space difference explain all
the effect? If only phase space f =
0.69, which can not explain data!
e+
3
f 
p  0.69
p00
Phys.Rev.Lett. 90, 142001 (2003)R. Kaiser et al.
y(3770)
e-
g*
Coulomb correction
y(3770)
3
*
f  FC
p 
, FC  (1 
)
p00
2
Yukawa correction
Two additional source sources:
(1) Coulomb interaction between charged meson
1%—5% M. Voloshin hep-ph/0402171
(2) Possible continuum contribution (EM process)
Both above are EM process which may violate the
isospin symmetry or violate the single iso-vector dominate.
2006-2-26
Haibo Li, IHEP, BES collaboration
21
Relative yield of charged and neutral D pairs at y(3770)
the resonance region (2)
According to M. Voloshin model (hep-ph/0402171), one can get:
 (e  e -  D  D - )
p
f ( ECM ) 
 FC  p00
 (e  e -  D 0 D 0 )
FC  1 
p p00
3

 ( ECM , a, d )

3
ECM is the central mass of energy;
a is the distance parameters ;
d = dBW + d1
Coulomb interaction
between charged mesons d1 is the phase for non-resonant
scattering, and
dBW is the y(3770) BW phase .
Phase space difference
It will be interesting to look at the ratio f vs ECM.
A finer scan of the ratio of the cross sections will
be very useful to test the prominent variation
(1%-5%)in the vicinity of y(3770) peak at BESIII
2006-2-26
f
Haibo Li, IHEP, BES collaboration
hep-ph/0402171
hep-ph/0602233 M. Voloshin
ECM
22
D Mixing
D 0shifts energy of CP eigenstates
D0
D
0
-
y
2
0
Dshifts
lifetimes of
2M 12


y  12

x
CP eigenstates
x mixing: Channel for New Physics.
y (long-range) mixing: SM background.
New physics will enhance x by entering the loop but not y.
Rmix 
2006-2-26
1
2
x
2
y
Haibo Li, IHEP, BES collaboration
2

23
BES III Charm Mixing
Mixing: y(3770)DD(C = -1)
Coherence simplifies study DCSD interfere away so not a background
Unmixed: D0 K-+ D0 K+mixing: D0 K-+
D0 D0 K-+
Can add lepton final states (Klv Klv)
Sensitivity: current limit: 10-3
2
( D 0 D 0  ( K -  )(K -  )) x 2  y 2 p B 2 K - 

2
2
( D 0 D 0  ( K -  )(K  - ))
2
q B K  rMixing at BESIII
K- vs K-
in (K-)(K-)
~1 background event is
expected
rD sensitivity is abut 1x10-4 @90% C.L.
K- vs KBESIII Monte Carlo Simulation
2006-2-26
Haibo Li, IHEP, BES collaboration
Efficiency:
12.5%
24
Direct CP Violation at ψ(3770) at BESIII
K
K-
Acp 
D
0
D
Im VcdVud* VcsVus* 
2
sin d PT
P
T
A2 4 sin d PT
•CP violating asymmetries can be
measured by searching for events with two
CP odd or two CP even final states ex:
0
π
π
-

P
 10-3
T
-, KK-, 0 0, Ks0 ,
for the decay of ψ  f1 f 2
CP( f1 f 2 )  CP( f1 )  CP( f 2 )  (-1) L  CP(ψ)  
ACP sensitivity is about 10-3 @90% C.L.
K K vs 
It is also true in phi decay: hep-ph/0511222
BESIII MC simulation Rss
Beam
constraint
Mass
=(10.70.8)10-6
2006-2-26
Haibo Li, IHEP, BES collaboration
BR(KSKS)=
(3.60.3)10-6
be accessible at KLOE?
25
Rare & Forbidden D Decays: FCNC, LFV, LNV
Observation of D+ FCNC
and lepton number violating
decays could indicate new
Focus hep-ex/0306049 and G. Burdman PRD66 014009(2002)
Sensitivities 10-6
3fb-1
physics.
Great improvement at
BESIII with 20 fb-1, about
100 million DD pairs,
but not competitive with
550 million DD pairs
at B factory for rare decays
The sensitivity will be 10-7 at BESIII
CLEO-c hep-ex/0601007 D. Miller 281pb-1
D+  V + (V  e+e- ) are main backgrounds, , r, 
2006-2-26
Haibo Li, IHEP, BES collaboration
26
Access to Semileptonic Weak Decay of J/y (1)
•Semileptonic decays: based on heavy quark spin symmetry:
Br (J/y  Ds l ) = 0.26  10 -8
A model independent prediction
for the ratio of the above BRs:
 y  DS*+ l 
R = ------------  1.5
y  DS+ l 
R=
;
Z.Phys.C62:271-280,1994
M. Sanchis-Lozano
More input from theorists !
Br (J/y  Ds* l ) = 0.42  10 -8
Sun S.S et al at BESII are working on the above modes
- 
-5
Based on 58 M J/y: Br( J /y  DS e  e )  4.6 10 ,
Br( J /y  D - e  e )  1.110-5
The rate of weak decay of J/y is at
10-8 level, and inclusive search
at BESIII may be available:
J/ y  D*+S X
 y  D*+ l 
D*+S  DS+ g (soft g )
------------  1.5
+  
D
+
S
y  D l 
*0K
K
The sensitivity at BESIII: 10-7 – 10-8
KSK+
Detail simulations are being done at BESIII.
…….
2006-2-26
Haibo Li, IHEP, BES collaboration
27
Access to Weak J/y Decay at BESIII (2)
•J/ y  DS (DS*) M (M = , r, ,,’,K, K*,)
J/ y  PP
hep-ph/9801202, K. Sharma
We need more theoretical input!
J/ y  PV
Mode
Decay
Br(10-10)
( 40% )
Mode
Decay
Br(10-10)
( 40% )
C = S=+1
(c  s )
y  DS+ y D0 K0
8.74
2.80
C = S=+1
(c  s)
y  DS+ ry D0 K*0
36.30
10.27
C=+1,S=0
(c  d)
y DS+Ky  D+y  D0
y  D0 ’
y  D00
0.55
0.55
0.016
0.003
0.055
C=+1,S=0
(c  d)
yDS+K*y  D+ry  D0r0
y  D0 
y  D0
2.12
2.20
0.22
0.18
0.65
 y  DS*+ - 
R = ------------  3.5
y  DS+ -
2006-2-26
<
They are too rare to be searched at BESIII (1010)
according to SM estimation. But sensitive to new
physics if larger BRs measured.
Haibo Li, IHEP, BES collaboration
28
Summary for BESIII
Analysis review of BESIII
• Charm Physics at threshold at BESIII
• Absolute BRs, test of QCD
• Charm event produced at threshold are very
• Decay constants with double tags events
clean with low multiplicity;
fD+ : 1.5%; fDs : 1.1% with 20 fb-1 data
• Charm events at threshold are pure DD pairs; • Form factors and Vcs and Vcd
• D mixing at threshold Rmixing : 2.5 10-4
• Double tag studies are pristine;
• Direct CP violations: ACP : 10-2
• Signal/Background is optimum at threshold; • The sensitivity of rare charm decay 10-7,
at B factories : 10-7 500 fb-1 data
• Neutrino reconstruction is clean;
• Measurement of Strong Phase cos dD ~
2%
• Quantum coherence
BESIII will provide unique opportunity for open
charm physics:
This comes at a fortuitous time, recent breakthroughs in precision lattice QCD
need detailed data to test against. Charm is provide that data. If the lattice
passes the charm test it can be used with increased confidence by:
BABAR/Belle/CDF/D0//LHC-b/ATLAS/CMS/BTeV to achieve precision
determinations of the CKM matrix elements Vub, Vcb, Vts, and Vtd thereby
maximizing the sensitivity of heavy quark flavor physics to physics beyond the
Standard Model.
The start of data taking at BESIII promises an era of precise charm physics.
2006-2-26
Haibo Li, IHEP, BES collaboration
29
Thank you
Спасибо
2006-2-26
Haibo Li, IHEP, BES collaboration
30
Back-up slides
2006-2-26
Haibo Li, IHEP, BES collaboration
31
Scan of the resonance region @ 3.7  4.6 GeV
Test isospin symmetry far away from open charm threshold!
Since the EM effect may be significant far away from DD threshold!
f ( Ecm ) 
 (e  e -  D  D - (*) )
 (e e  D D
 -
0
0 (*)
,
)
Could possible EM contribution affect the ratio?
2

*
*

*
Interference effect:  A(e e  g  DD )  A(e e  cc  DD )
It will be very helpful to make a fine scan of the ratio @ 3.7  4.6GeV, so that
one can understand the formation of DD system near or above the threshold
2006-2-26
Haibo Li, IHEP, BES collaboration
32
Scan of the resonance region @ 3.7  4.6 GeV(2)
(*)
 (e e  D D ), (e  e -  DS DS-(*) ),
 -
 (e  e -  J /y  - ), (e  e -   cJ r ( ))
Test QCD @ 3.7  4.6 GeV
Search for exotic ccbar, Y(4260)
 (e  e -   ), (e  e -   J /y )
 (e  e -  KK ), (e  e -    )
2006-2-26
Probe gluon enhanced hidden ccbar states
Haibo Li, IHEP, BES collaboration
33
D meson Decay Constants
c
Targeted near threshold at BES
| Vcd(s) |2
f D2(s)
W


 
d s
Decay is forbidden as ml0 : Helicity suppression
l
2
m
( Dq   )  81 GF2 M D m2 (1 - 2 ) f D2 | Vcq |2
q
M D
(D  e  e ) : (D     ) : (D t t )  2.310 :1: 2.67






-5
(Ds  e e ) : (Ds     ) : (Ds t t )  10-5 :1:10
f D(s)
 1 t D(s)
 
 2 tD
(s)

2006-2-26
2
  1 B  2   | Vcd(s) | 
 

  

 2 B 
 | Vcd(s) | 

2

(Ds 

(B  

 )  |Vcs |2  (0.97) 2
 )  |Vub |2  (0.003)2
J 0
The uncertainty of Decay constants:
f D(s)
 )  |Vcd |2  (0.22) 2
(D 

Haibo Li, IHEP, BES collaboration



M
J 0
M


34
Challenge LQCD Prediction
(I. Shipsey)
Expt/LQCD consistent at 45% CL
Now: LQCD error ~8%
CLEO-c error 8%
CLEO <5% within a year
Need latest LQCD predictions to few %
by summer 2006 f D+ & 2007 f Ds
with 3fb -1 : f D  to 2.3%
f Ds to 1.9% @ s ~ 4140 MeV
2006-2-26
Haibo Li, IHEP, BES collaboration
35
Charm As a Probe of Physics Beyond the Standard Model
CP asymmetry≤10-3
Rare decays ≤10-6
D0 - D0 mixing ≤10-2
G. Burdman and I. Shipesy hep-ph/0310076
High statistics instead of High Energy
2006-2-26
Haibo Li, IHEP, BES collaboration
36
In charm very difficult to calculate the SM rate for rare decays
reliably. one of the most reliable:
I. Shipsey
R parity violating SUSY
In the SM
Burdman
Short distance SM
Penguin, W box
B (D+  +e+e-) ~ 2 x 10-6
R-parity violating SUSY:
B (D+  +e+e-) ~ 2.4 x 10-6
Short + long distance SM rho and phi  e+e-
Increase in rate is small but significant at low dilepton mass
Current experimental limit CLEO II:
B (D+  +e+e-) ~ 4.5 x 10-5 @ 90%CL
Goal observe, and one day study dilepton mass
2006-2-26
Haibo Li, IHEP, BES collaboration
37
0

Preliminary results of BRs of y ( 3770 )  D D , D D , D D
and y (3770)  non- D D
0
.
BES measured the branching fractions for inclusive non-DD-bar
decays of y(3770) using two different data sample and two different
methods
Determined
BF (y (3770)  D0 D 0 )  (50.1  1.3  3.9)%
from analysis
BF (y (3770)  D D- )  (35.9  1.1  3.5)%
of R values
BF (y (3770)  DD )  (86.0  1.7  6.0)%
BF (y (3770)  non - DD )  (14.0  1.7  6.0)%
and DD-bar
cross sections
These are first measurements by using 33pb-1 @BESII
BF (y (3770)  D D )  (46.8  5.2  3.2)%
BF (y (3770)  D D- )  (37.0  4.1  3.5)%
BF (y (3770)  DD )  (83.8  6.8  6.4)%
BF (y (3770)  non - DD )  (16.2  6.8  6.4)%
BF (y (3770)  non - DD )  30.1% @ at 90%C.L.
0
2006-2-26
0
Haibo Li, IHEP, BES collaboration
Obtained from
fitting to the
inclusive
hadron and the
DD-bar
production
cross sections
simultaneously.
38
Compare B factories & Charm Factories
 (BB)  tag  Ldt=500fb-1
#B tags @B Factory

~1
-1
#D tags @Charm Factory
 (DD)  tag  Ldt=3fb
CFactory
3 fb-1
Statistics limited
30
BFactory
500 fb-1
COMPARISON
PDG04
Systematics &
Background limited
Br ( DS    )
25
fD
fDs
%
Error
Error (%)
20
15
10
Br (D  K )
Br (D0  K)
5
0
2006-2-26
Haibo Li, IHEP, BES collaboration
39