Transcript Slide 1

Use of Heat Pumps in
Passive Solar Houses
Jakub Ziółkowski
Supervisors:
Dr. Bjorn Marteinsson
Dr. Ragnar Asmundsson
Goals
• Design passive house building (Poland,
Kraków)
• Choose best solution for equipment
• Cost analysis (comparison between different
heat sources)
2
Passive house
The Passive House offers a cost-efficient
way of minimizing the energy demand of
new buildings in accordance with the global
principle of sustainability, while at the same
time improving the comfort experienced by
building occupants.
3
Basic elements of passive house
• Superinsulation
• Combining efficient heat recovery with
supplementary supply air heating
• Passive solar systems
• Efficient electric appliances
• Meeting the remaining energy demand with
renewable (heat pump, solar panels)
4
Passive house standards
Solution
Passive House standard
Insulation walls, roof and floors
U ≤ 0,15 W/(m2K)
Windows casing and glazing, doors
U ≤ 0,80 W/(m2K)
Thermal bridges
ψ ≤ 0,01 W/(mK)
Air heat exchanger
η ≥ 75%
Space heating
low temperature heating
Domestic Hot Water (DHW) solar heater
yes
Solar orientation
yes
Annual heat demand per m2
less than 15 kWh/a
5
Heat pump
The renewable heat source which causes the
heat to flow in a direction opposite to its
natural tendency in terms of temperature.
Mechanical work
Cold reservoir
Hot reservoir
6
Heat sources for heat pump
a)
b)
c)
d)
e)
f)
Bedrock heat
Ground heat
Water heat
Air heat
Groundwater heat
Waste heat
7
Solar panels and photovoltaic panels
• Solar panels uses the energy from the sun to
heat a fluid, and then water in hot water
tank. (efficiency ≈ 70-80%)
• Photovoltaic (PV) panels convert sunlight
directly into electricity using photovoltaic
effect. (efficiency ≈ 20%)
8
PASSIVE HOUSE DESIGN
9
U
W/(m2K)
Component
S
U ≤ 0,15 W/(m2K)
U ≤ 0,80 W/(m2K)
Ew (external wall)
0,146
F (floor)
0,150
W1 (window 1)
0,700
W2 (window 2)
0,700
W3 (window 3)
0,700
W4 (window 4)
0,700
W5 (window 5)
0,700
W6 (window 6)
0,700
W7 (window 7)
0,700
ED1 (external door 1)
0,600
ED2 (external door 2)
0,600
U
W/(m2K)
Component
Iw1 (internal wall 1)
1,701
Iw2 (internal wall 2)
0,618
Iw3 (internal wall 3)
3,000
10
U
W/(m2K)
Component
S
Ew (external wall)
0,146
C (Ceiling)
0,143
W8 (window 8)
0,700
W9 (window 9)
0,700
W10 (window 10)
0,700
W11 (window 11)
0,700
W7 (window 7)
0,700
ED3 (external door 3)
0,600
Bf (balcony floor)
0,243
R (roof)
0,141
U
W/(m2K)
Component
Iw1 (internal wall 1)
1,701
U ≤ 0,15 W/(m2K)
U ≤ 0,80 W/(m2K)
11
Thermal bridges
12
Thermal bridges
ψ ≤ 0,01W/(mK)
13
Design heat losses and energy demand
• To calculate energy demand for houses EN
12831 standard and EN 13970 standard
were used.
• Overall designed heat losses 3726W
• Overall heating energy demand 2318 kWh/a
• Annual cooling demand 1110 kWh/a
• Annual heat demand per m2 14,9 kWh/a
Annual heat demand per m2 ≤ 15 kWh/a
14
Building equipment
Equipment
Type
Description
Heat recovery
unit
PRO-VENT MISTRAL 400
duo
Air flux 200m3/h
Electricty consumprion 160W
Efficieny 90% η ≥ 75%
Heat pump
Viessmann Vitocal 300 type
BW 104
Maximal power output 4,8kW
Water circuit
pump
Grundfos ALPHA2 32-40
Electricity consumption 5,5W
Brine circuit
pump
Grundfos ALPHA2 32-60
Electricity consumption 45W
Hot water tank
Viessmann Vitocell 100-B
type CVB
Capacity 300 l
Standby losses 1,00 kWh/day
15
Heat pump system solutions
35°C
55°C
35°C
55°C
a) Space heating
b) Space heating and domestic hot water (DHW) preparation
• Constant temperature (55°C)
• Variable temperature (55°C for DHW preparation and 35°C for space heating)
16
Annual energy consumption [kWh/a]
Heat pump space heating/cooling
350
330
310
290
270
250
230
210
190
170
150
Heating
Cooling
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Ground heat exhanger depth [m]
17
Annual energy consumption [kWh/a]
Heat pump space heating and cooling
520
519
518
517
516
515
514
513
512
511
510
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Ground heat exhanger depth [m]
18
Solar panels
Vitosol 200-F
Vitosol 200-T
Type of collector
Flat panel
Vacuum tube
Optical efficiency [%]
79
83,2
Absorber area [m2]
2,32
3,17
• The efficiency of solar panels depends on
optical efficiency, external temperature and
solar panel temperature
19
Solar panels DHW preparation solar
coverage
30
120
Vitosol 200-T
20
100
Vitosol 200-F
Solar coverage
80
15
60
10
40
5
20
0
1000
0
1500
2000
Solar coverage [%]
Aperture [m2]
25
2500
Energy saved [kWh/a]
20
Photovoltaic (PV) panels
Minimal voltage for grid-tided system 240V
Number
of
Current
Series
panels
A
1
1
5,4
1
2
10,8
7
7
5,4
7
14
10,8
7
7
5,4
7
14
10,8
Configuration
Type
Off-grid
Off-grid
Off-grid
Off-grid
Grid-tied
Grid-tied
Parallel
1
2
1
2
1
2
Voltage
V
39,8
39,8
278,6
278,6
278,6
278,6
Annual
electricity
production
kWh
161
321
161
321
192
384
Derating multiplayer
•Off-grid system 66%
•Grid-tied syetm 79%
21
Cooperation heat pump with heat
recovered from sewage
• The average daily water use is equal to
353 litres, with average water temperature of
26°C.
• Growth of brine temperature from 0,53°C
to 0,79°C
• Decrease of 0,6% in the heat pump
electricity consumption
22
COSTS AND BUILDING
SOLUTIONS
23
Heating systems
Heat source
Type of unit
Additional system components
Heat pump
Viessmann Vitocal
300 type BW 104
Ground heat exchanger, heating installation, brine
circuit pump, water circuit pump
Electric heating Electric mats
Devimat DSVF-150
-
Gas fired boiler ViessmannVitodens
222-W
Heating installation, chimney, water circuit pump,
fuel tank
Coal fired
boiler
Buderus Logano
S111
Heating installation , chimney, water circuit pump
Oil fired boiler
Viessmann
Vitoladens 300-C
Heating installation , chimney, water circuit pump,
fuel tank
Wood fired
boiler
Buderus Logano
S111D
Heating installation , chimney, water circuit pump
24
Annual heat demand 14,9 kWh/m2
Passive house
Heating + DHW (i=4%)
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Cost [EUR]
Cost [EUR]
Heating (i=4%)
0
5
10
15
Time [year]
20
25
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Heat pump
Oil fired boiler
0
0
5
10
15
Time [year]
10
15
Time [year]
20
25
Heating + DHW (i=6%)
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Cost [EUR]
Cost [EUR]
Cooperation (i=4%)
5
20
25
Coal fired boiler
Wood fired boiler
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Electric heating
Gas fired boiler
0
5
10
15
Time [year]
20
25
25
Annual heat demand 25 kWh/m2
Energy savings house
Heating + DHW (i=4%)
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Cost [EUR]
Cost [EUR]
Heating (i=4%)
0
5
10
15
Time [year]
20
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Cost [EUR]
10
15
20
25
Heating + DHW (i=6%)
Cost [EUR]
10
15
Time [year]
5
Time [year]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
5
Oil fired boiler
0
25
Cooperation (i=4%)
0
Heat pump
20
25
Coal fired boiler
Wood fired boiler
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Electric heating
Gas fired boiler
0
5
10
15
Time [year]
20
25
26
Annual heat demand 119 kWh/m2
Regular house
Heating + DHW (i=4%)
80000
80000
70000
70000
60000
60000
Cost [EUR]
Cost [EUR]
Heating (i=4%)
50000
40000
30000
50000
40000
30000
20000
20000
10000
10000
0
0
0
5
10
15
Time [year]
20
0
25
5
10
15
20
25
Time [year]
Wood fired boiler
80000
80000
70000
60000
50000
40000
30000
20000
10000
0
70000
Cost [EUR]
Oil fired boiler
Coal fired boiler
Heating + DHW (i=6%)
Cooperation (i=4%)
Cost [EUR]
Heat pump
Electric heating
60000
50000
Gas fired boiler
40000
30000
20000
10000
0
5
10
15
Time [year]
20
25
0
0
5
10
15
Time [year]
20
25
27
CONCLUSIONS
28
• The reason why heat pump system is not so
cost effective compared to other heat
sources is high investment cost.
• Best solution for passive house: heat pump
with two flat panel solar panels
• Price of the PV panels is too high compare
to profits.
• For small water demand, cooperation heat
pump using heat recovered from sewage is
not profitable at all.
29
30
31
Code
ψ
Description
Code
ψ
Description
-
W/(mK)
-
-
W/(mK)
-
C1
-0,05
Corner
D7
0,45
External door
IW1
0
External wall
/ Internal
wall
W7
0,45
Window
IW6
0
Internal wall
/ Internal
wall
B1
0,95
Balcony /
External Wall
F1
0
Ceiling /
External wall
R1
0,55
Roof /
External wall
IWFE2
0
Ceiling /
Internal wall
IWR1
0
Roof /
Internal wall
GF1
0,65
Floor /
External wall
CC1
0,05
Concave
corner
Picture
Picture
32
Thermal transmission coefficients
Space
-
Thermal transmission
coefficients
W/K
1.1
Vestibule
1,78
1.2
Room
19,73
1.3
Room
8,78
1.4
Bathroom
0,83
1.5
Kitchen
7,78
1.6
Boxroom
1,70
2.1
Hall
2,46
2.2
Boxroom
3,50
2.3
Room
8,69
2.4
Wardrobe
1,90
2.5
Bathroom
3,79
2.6
Room
6,31
33
34
Component
U
Area
Dimensions
(h/l)
β
Glass
area
Asol,w
Fr,k
Perimeter
ψ*l
Htr,w
-
W/m2
K
m2
m/m
-
m2
m2
-
m
W/K
W/K
-
-
-
-
6,00
0,06
1,26
Door - ED1
0,600
2,00
2/1
Door - ED2
0,600
3,80
2/1,9
0,72
2,74
0,958
0,5
7,80
0,08
2,36
Door - ED3
0,600
2,00
2/1
0,67
1,34
0,469
0,5
6,00
0,06
1,26
Window - W1
0,700
1,44
1,2/1,2
0,63
0,91
0,318
0,5
4,80
0,05
1,06
Window - W2
0,700
3,80
2/1,9
0,72
2,74
0,958
0,5
7,80
0,08
2,74
Window - W3
0,700
3,80
2/1,9
0,72
2,74
0,958
0,5
7,80
0,08
2,74
Window - W4
0,700
2,16
1,2/1,8
0,67
1,45
0,507
0,5
6,00
0,06
1,57
Window - W5
0,700
2,16
1,2/1,8
0,67
1,45
0,507
0,5
6,00
0,06
1,57
Window - W6
0,700
0,54
0,9/0,6
0,47
0,25
0,089
0,5
3,00
0,03
0,41
Window - W7
0,700
2,16
1,2/1,8
0,67
1,45
0,507
0,5
6,00
0,06
1,57
Window - W8
0,700
2,16
1,2/1,8
0,67
1,45
0,507
0,5
6,00
0,06
1,57
Window - W9
0,700
0,76
0,98/0,78
0,58
0,44
0,155
0,8
3,52
0,04
0,57
Window - W10
0,700
0,76
0,98/0,78
0,58
0,44
0,155
0,8
3,52
0,04
0,57
Window - W11
0,700
2,56
0,6/0,6*
0,69
1,77
0,618
0,5
2,15
0,02
1,81
Sum
28,11
Sum
19,15
Sum
21,06
35
36
Solar panels
Basic parameters
Vitosol 200-T
Vitosol 200-F
One solar panel absorber area [m2]
3,17
2,32
Linear heat losses coefficient[W/(m2K)]
1,87
3,95
Quadratic heat losses coefficient
[W/(m2K2)]
0,0041
0,0122
Optical efficiency [%]
83,2
79
37
Solar panels and hot water tank circuit
ΦE
heat exchanged between solar panels and
hot water tank [W]
ΦH
additional heater power [W]
ΦL
hot water tank heat losses[W]
ΦLi
inlet pipe heat losses [W]
ΦLo
outlet pipe heat losses [W]
Φcw
heat needed for hot water preparation [W]
Θt
hot-water-tank water temperature [°C]
Θi
solar panel inlet water temperature [°C]
Θo
solar panel outlet water temperature [°C]
η
solar panels efficiency [-]
Isol
solar irradiance [W/m2]
38
Solar panels energy
Energy of additional heater
Heat losses in inlet pipes
Heat losses in outlet pipes
Energy need to heat up water from cold water temperature to hot-water-tank temperature
Energy exchanged between solar panel circuit and hot water in tank
39
40
41
Hot water tank temperature
42
Heat pump electricity consumption
43
Heat pump
44
Ground heat exchanger
45
Costs
Fuel type
hard coal
gas (GZ-50)
fuel oil
fire-wood
Lower heating
value
29
34
39
10,5
MJ/kg
MJ/m3
MJ/l
MJ/kg
Price
[EUR/kWh]
0,0048
0,0073
0,0171
0,0065
46
Description
Type
Solar panel
Vitosol 200-T
2825
3181
12882
Oil fired condensing boiler
Vitoladens 300-C
2314
2618
10551
Coal fired boiler
Logano S111
412
463
1877
Wood fired boiler
Logano S111D
620
698
2826
Gas fired boiler
Vitodens 222-W
1740
1960
7936
Electric mat (16 items)
Devimat DSVF-150
1307
1471
5959
Heat pump
Vitocal 300
3842
4326
17521
Solar panel
Vitosol 200-F
630
710
2874
Water circuit pump
Grundfos ALPHA2 32-40
175
197
799
Brine circuit pump
Grundfos ALPHA2 32-60
195
220
889
Solar panels equipment
Solar-Divicon PS 10
338
380
1541
Hot water tank
Vitocell 100-B
1027
1156
4682
44
49
200
immersion heater
GBP
EUR
PLN
47
Solar panels comparison (heat pump)
48
Solar panels comparison (electric
heating)
49
CO2 emissions
Source
Coal fired boiler
Regular house Oil fired boiler
Gas fired boiler
Coal fired boiler
Energysavings house Oil fired boiler
Gas fired boiler
Emmision
Amount of
10434
4717
3111
2113
918
542
fuel
3561
2036
1671
721
396
291
factor
2,930
2,317
1,862
2,930
2,317
1,862
50
Localization
Elbląg
Kołobrzeg
Kraków
Lublin
Warszawa
Latitude
°
54,15
54,18
50,67
51,25
52,25
Total annual
Design
Annual average
Longitude
global
outside
external
radiation
temperature
temperature
°
19,43
15,58
19,78
22,50
21,00
kWh/m2
900
826
1045
975
978
°C
°C
-18
-16
-20
-20
-20
7,9
7,7
7,6
7,6
7,6
Annual
heating
energy
demand
kWh/m2
15,1
12,3
14,9
15,8
14,1
51
Discussion
City
Latitude [°]
Longitude [°]
Total annual global radiation [kWh/m2]
Mean outside temperature [°C]
Lowest outside temperature [°C]
Cold water temperaure [°C]
DHW heating energy supply [kWh/a]
daily DHW demand [l]
Model
ESOP NA 4.0
Kraków
Wurzburg
50,67
49,77
19,78
-9,97
1045,54
1091,3
8,3
9,5
-20,2
-14,8
10
10
2860,80
2803,47
147
147
52