Transcript Slide 1
Use of Heat Pumps in Passive Solar Houses Jakub Ziółkowski Supervisors: Dr. Bjorn Marteinsson Dr. Ragnar Asmundsson Goals • Design passive house building (Poland, Kraków) • Choose best solution for equipment • Cost analysis (comparison between different heat sources) 2 Passive house The Passive House offers a cost-efficient way of minimizing the energy demand of new buildings in accordance with the global principle of sustainability, while at the same time improving the comfort experienced by building occupants. 3 Basic elements of passive house • Superinsulation • Combining efficient heat recovery with supplementary supply air heating • Passive solar systems • Efficient electric appliances • Meeting the remaining energy demand with renewable (heat pump, solar panels) 4 Passive house standards Solution Passive House standard Insulation walls, roof and floors U ≤ 0,15 W/(m2K) Windows casing and glazing, doors U ≤ 0,80 W/(m2K) Thermal bridges ψ ≤ 0,01 W/(mK) Air heat exchanger η ≥ 75% Space heating low temperature heating Domestic Hot Water (DHW) solar heater yes Solar orientation yes Annual heat demand per m2 less than 15 kWh/a 5 Heat pump The renewable heat source which causes the heat to flow in a direction opposite to its natural tendency in terms of temperature. Mechanical work Cold reservoir Hot reservoir 6 Heat sources for heat pump a) b) c) d) e) f) Bedrock heat Ground heat Water heat Air heat Groundwater heat Waste heat 7 Solar panels and photovoltaic panels • Solar panels uses the energy from the sun to heat a fluid, and then water in hot water tank. (efficiency ≈ 70-80%) • Photovoltaic (PV) panels convert sunlight directly into electricity using photovoltaic effect. (efficiency ≈ 20%) 8 PASSIVE HOUSE DESIGN 9 U W/(m2K) Component S U ≤ 0,15 W/(m2K) U ≤ 0,80 W/(m2K) Ew (external wall) 0,146 F (floor) 0,150 W1 (window 1) 0,700 W2 (window 2) 0,700 W3 (window 3) 0,700 W4 (window 4) 0,700 W5 (window 5) 0,700 W6 (window 6) 0,700 W7 (window 7) 0,700 ED1 (external door 1) 0,600 ED2 (external door 2) 0,600 U W/(m2K) Component Iw1 (internal wall 1) 1,701 Iw2 (internal wall 2) 0,618 Iw3 (internal wall 3) 3,000 10 U W/(m2K) Component S Ew (external wall) 0,146 C (Ceiling) 0,143 W8 (window 8) 0,700 W9 (window 9) 0,700 W10 (window 10) 0,700 W11 (window 11) 0,700 W7 (window 7) 0,700 ED3 (external door 3) 0,600 Bf (balcony floor) 0,243 R (roof) 0,141 U W/(m2K) Component Iw1 (internal wall 1) 1,701 U ≤ 0,15 W/(m2K) U ≤ 0,80 W/(m2K) 11 Thermal bridges 12 Thermal bridges ψ ≤ 0,01W/(mK) 13 Design heat losses and energy demand • To calculate energy demand for houses EN 12831 standard and EN 13970 standard were used. • Overall designed heat losses 3726W • Overall heating energy demand 2318 kWh/a • Annual cooling demand 1110 kWh/a • Annual heat demand per m2 14,9 kWh/a Annual heat demand per m2 ≤ 15 kWh/a 14 Building equipment Equipment Type Description Heat recovery unit PRO-VENT MISTRAL 400 duo Air flux 200m3/h Electricty consumprion 160W Efficieny 90% η ≥ 75% Heat pump Viessmann Vitocal 300 type BW 104 Maximal power output 4,8kW Water circuit pump Grundfos ALPHA2 32-40 Electricity consumption 5,5W Brine circuit pump Grundfos ALPHA2 32-60 Electricity consumption 45W Hot water tank Viessmann Vitocell 100-B type CVB Capacity 300 l Standby losses 1,00 kWh/day 15 Heat pump system solutions 35°C 55°C 35°C 55°C a) Space heating b) Space heating and domestic hot water (DHW) preparation • Constant temperature (55°C) • Variable temperature (55°C for DHW preparation and 35°C for space heating) 16 Annual energy consumption [kWh/a] Heat pump space heating/cooling 350 330 310 290 270 250 230 210 190 170 150 Heating Cooling 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ground heat exhanger depth [m] 17 Annual energy consumption [kWh/a] Heat pump space heating and cooling 520 519 518 517 516 515 514 513 512 511 510 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ground heat exhanger depth [m] 18 Solar panels Vitosol 200-F Vitosol 200-T Type of collector Flat panel Vacuum tube Optical efficiency [%] 79 83,2 Absorber area [m2] 2,32 3,17 • The efficiency of solar panels depends on optical efficiency, external temperature and solar panel temperature 19 Solar panels DHW preparation solar coverage 30 120 Vitosol 200-T 20 100 Vitosol 200-F Solar coverage 80 15 60 10 40 5 20 0 1000 0 1500 2000 Solar coverage [%] Aperture [m2] 25 2500 Energy saved [kWh/a] 20 Photovoltaic (PV) panels Minimal voltage for grid-tided system 240V Number of Current Series panels A 1 1 5,4 1 2 10,8 7 7 5,4 7 14 10,8 7 7 5,4 7 14 10,8 Configuration Type Off-grid Off-grid Off-grid Off-grid Grid-tied Grid-tied Parallel 1 2 1 2 1 2 Voltage V 39,8 39,8 278,6 278,6 278,6 278,6 Annual electricity production kWh 161 321 161 321 192 384 Derating multiplayer •Off-grid system 66% •Grid-tied syetm 79% 21 Cooperation heat pump with heat recovered from sewage • The average daily water use is equal to 353 litres, with average water temperature of 26°C. • Growth of brine temperature from 0,53°C to 0,79°C • Decrease of 0,6% in the heat pump electricity consumption 22 COSTS AND BUILDING SOLUTIONS 23 Heating systems Heat source Type of unit Additional system components Heat pump Viessmann Vitocal 300 type BW 104 Ground heat exchanger, heating installation, brine circuit pump, water circuit pump Electric heating Electric mats Devimat DSVF-150 - Gas fired boiler ViessmannVitodens 222-W Heating installation, chimney, water circuit pump, fuel tank Coal fired boiler Buderus Logano S111 Heating installation , chimney, water circuit pump Oil fired boiler Viessmann Vitoladens 300-C Heating installation , chimney, water circuit pump, fuel tank Wood fired boiler Buderus Logano S111D Heating installation , chimney, water circuit pump 24 Annual heat demand 14,9 kWh/m2 Passive house Heating + DHW (i=4%) 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Cost [EUR] Cost [EUR] Heating (i=4%) 0 5 10 15 Time [year] 20 25 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Heat pump Oil fired boiler 0 0 5 10 15 Time [year] 10 15 Time [year] 20 25 Heating + DHW (i=6%) 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Cost [EUR] Cost [EUR] Cooperation (i=4%) 5 20 25 Coal fired boiler Wood fired boiler 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Electric heating Gas fired boiler 0 5 10 15 Time [year] 20 25 25 Annual heat demand 25 kWh/m2 Energy savings house Heating + DHW (i=4%) 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Cost [EUR] Cost [EUR] Heating (i=4%) 0 5 10 15 Time [year] 20 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Cost [EUR] 10 15 20 25 Heating + DHW (i=6%) Cost [EUR] 10 15 Time [year] 5 Time [year] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 5 Oil fired boiler 0 25 Cooperation (i=4%) 0 Heat pump 20 25 Coal fired boiler Wood fired boiler 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Electric heating Gas fired boiler 0 5 10 15 Time [year] 20 25 26 Annual heat demand 119 kWh/m2 Regular house Heating + DHW (i=4%) 80000 80000 70000 70000 60000 60000 Cost [EUR] Cost [EUR] Heating (i=4%) 50000 40000 30000 50000 40000 30000 20000 20000 10000 10000 0 0 0 5 10 15 Time [year] 20 0 25 5 10 15 20 25 Time [year] Wood fired boiler 80000 80000 70000 60000 50000 40000 30000 20000 10000 0 70000 Cost [EUR] Oil fired boiler Coal fired boiler Heating + DHW (i=6%) Cooperation (i=4%) Cost [EUR] Heat pump Electric heating 60000 50000 Gas fired boiler 40000 30000 20000 10000 0 5 10 15 Time [year] 20 25 0 0 5 10 15 Time [year] 20 25 27 CONCLUSIONS 28 • The reason why heat pump system is not so cost effective compared to other heat sources is high investment cost. • Best solution for passive house: heat pump with two flat panel solar panels • Price of the PV panels is too high compare to profits. • For small water demand, cooperation heat pump using heat recovered from sewage is not profitable at all. 29 30 31 Code ψ Description Code ψ Description - W/(mK) - - W/(mK) - C1 -0,05 Corner D7 0,45 External door IW1 0 External wall / Internal wall W7 0,45 Window IW6 0 Internal wall / Internal wall B1 0,95 Balcony / External Wall F1 0 Ceiling / External wall R1 0,55 Roof / External wall IWFE2 0 Ceiling / Internal wall IWR1 0 Roof / Internal wall GF1 0,65 Floor / External wall CC1 0,05 Concave corner Picture Picture 32 Thermal transmission coefficients Space - Thermal transmission coefficients W/K 1.1 Vestibule 1,78 1.2 Room 19,73 1.3 Room 8,78 1.4 Bathroom 0,83 1.5 Kitchen 7,78 1.6 Boxroom 1,70 2.1 Hall 2,46 2.2 Boxroom 3,50 2.3 Room 8,69 2.4 Wardrobe 1,90 2.5 Bathroom 3,79 2.6 Room 6,31 33 34 Component U Area Dimensions (h/l) β Glass area Asol,w Fr,k Perimeter ψ*l Htr,w - W/m2 K m2 m/m - m2 m2 - m W/K W/K - - - - 6,00 0,06 1,26 Door - ED1 0,600 2,00 2/1 Door - ED2 0,600 3,80 2/1,9 0,72 2,74 0,958 0,5 7,80 0,08 2,36 Door - ED3 0,600 2,00 2/1 0,67 1,34 0,469 0,5 6,00 0,06 1,26 Window - W1 0,700 1,44 1,2/1,2 0,63 0,91 0,318 0,5 4,80 0,05 1,06 Window - W2 0,700 3,80 2/1,9 0,72 2,74 0,958 0,5 7,80 0,08 2,74 Window - W3 0,700 3,80 2/1,9 0,72 2,74 0,958 0,5 7,80 0,08 2,74 Window - W4 0,700 2,16 1,2/1,8 0,67 1,45 0,507 0,5 6,00 0,06 1,57 Window - W5 0,700 2,16 1,2/1,8 0,67 1,45 0,507 0,5 6,00 0,06 1,57 Window - W6 0,700 0,54 0,9/0,6 0,47 0,25 0,089 0,5 3,00 0,03 0,41 Window - W7 0,700 2,16 1,2/1,8 0,67 1,45 0,507 0,5 6,00 0,06 1,57 Window - W8 0,700 2,16 1,2/1,8 0,67 1,45 0,507 0,5 6,00 0,06 1,57 Window - W9 0,700 0,76 0,98/0,78 0,58 0,44 0,155 0,8 3,52 0,04 0,57 Window - W10 0,700 0,76 0,98/0,78 0,58 0,44 0,155 0,8 3,52 0,04 0,57 Window - W11 0,700 2,56 0,6/0,6* 0,69 1,77 0,618 0,5 2,15 0,02 1,81 Sum 28,11 Sum 19,15 Sum 21,06 35 36 Solar panels Basic parameters Vitosol 200-T Vitosol 200-F One solar panel absorber area [m2] 3,17 2,32 Linear heat losses coefficient[W/(m2K)] 1,87 3,95 Quadratic heat losses coefficient [W/(m2K2)] 0,0041 0,0122 Optical efficiency [%] 83,2 79 37 Solar panels and hot water tank circuit ΦE heat exchanged between solar panels and hot water tank [W] ΦH additional heater power [W] ΦL hot water tank heat losses[W] ΦLi inlet pipe heat losses [W] ΦLo outlet pipe heat losses [W] Φcw heat needed for hot water preparation [W] Θt hot-water-tank water temperature [°C] Θi solar panel inlet water temperature [°C] Θo solar panel outlet water temperature [°C] η solar panels efficiency [-] Isol solar irradiance [W/m2] 38 Solar panels energy Energy of additional heater Heat losses in inlet pipes Heat losses in outlet pipes Energy need to heat up water from cold water temperature to hot-water-tank temperature Energy exchanged between solar panel circuit and hot water in tank 39 40 41 Hot water tank temperature 42 Heat pump electricity consumption 43 Heat pump 44 Ground heat exchanger 45 Costs Fuel type hard coal gas (GZ-50) fuel oil fire-wood Lower heating value 29 34 39 10,5 MJ/kg MJ/m3 MJ/l MJ/kg Price [EUR/kWh] 0,0048 0,0073 0,0171 0,0065 46 Description Type Solar panel Vitosol 200-T 2825 3181 12882 Oil fired condensing boiler Vitoladens 300-C 2314 2618 10551 Coal fired boiler Logano S111 412 463 1877 Wood fired boiler Logano S111D 620 698 2826 Gas fired boiler Vitodens 222-W 1740 1960 7936 Electric mat (16 items) Devimat DSVF-150 1307 1471 5959 Heat pump Vitocal 300 3842 4326 17521 Solar panel Vitosol 200-F 630 710 2874 Water circuit pump Grundfos ALPHA2 32-40 175 197 799 Brine circuit pump Grundfos ALPHA2 32-60 195 220 889 Solar panels equipment Solar-Divicon PS 10 338 380 1541 Hot water tank Vitocell 100-B 1027 1156 4682 44 49 200 immersion heater GBP EUR PLN 47 Solar panels comparison (heat pump) 48 Solar panels comparison (electric heating) 49 CO2 emissions Source Coal fired boiler Regular house Oil fired boiler Gas fired boiler Coal fired boiler Energysavings house Oil fired boiler Gas fired boiler Emmision Amount of 10434 4717 3111 2113 918 542 fuel 3561 2036 1671 721 396 291 factor 2,930 2,317 1,862 2,930 2,317 1,862 50 Localization Elbląg Kołobrzeg Kraków Lublin Warszawa Latitude ° 54,15 54,18 50,67 51,25 52,25 Total annual Design Annual average Longitude global outside external radiation temperature temperature ° 19,43 15,58 19,78 22,50 21,00 kWh/m2 900 826 1045 975 978 °C °C -18 -16 -20 -20 -20 7,9 7,7 7,6 7,6 7,6 Annual heating energy demand kWh/m2 15,1 12,3 14,9 15,8 14,1 51 Discussion City Latitude [°] Longitude [°] Total annual global radiation [kWh/m2] Mean outside temperature [°C] Lowest outside temperature [°C] Cold water temperaure [°C] DHW heating energy supply [kWh/a] daily DHW demand [l] Model ESOP NA 4.0 Kraków Wurzburg 50,67 49,77 19,78 -9,97 1045,54 1091,3 8,3 9,5 -20,2 -14,8 10 10 2860,80 2803,47 147 147 52