No Slide Title

Download Report

Transcript No Slide Title

EcoDesign for Electrical &
Electronics Equipment
by
Asst.Prof.Dr. Thumrongrut Mungcharoen
Coordinator, Cleaner Technology Advancement Program,
National Metal and Materials Technology Center,
National Science and Technology Development Agency
Director, CT & EcoDesign Research Unit,
Faculty of Engineering, Kasetsart University
Research Team
 Asst.Prof.Dr.
 Dr.Koji
Thumrongrut Mungcharoen
Ibuki
 Ms.Chantana Yuvaniyama
 Mr.Seksan Papong
 Ms.Viganda Varabuntoonvit
TOPICS
 Introduction
to EcoDesign
 Introduction to Research Project
 Methodology and Tools
 Progress and Results
 Conclusion
Introduction to EcoDesign
 EcoDesign
(Economic and Ecological Design)
DfE (Design for Environment), Sustainable
product design, Green design, etc.
 EcoDesign is a strategy to incorporate
environmental considerations into product
design and development throughout the life
cycle of a product. In all development stage,
also need to find the right balance between
ecological and economic requirements
Design for Sustainable
Design for Sustainable (cont.)
Eco-efficiency improvement/
organisational complexity
20
Type 4:
System
innovation
Sustainable
level
Type 2:
Product
redesign
Type 1:
Product
improvement
5
10
Eco-efficiency curves
Type 3:
Function
innovation
20
Time (years)
EcoDesign Strategies
 The
actions that can be taken to reduce
environmental impacts
 Should be selected on the basis of an
environmental assessment and broader
analysis of the product and its market
EcoDesign Strategies (cont.)
Consider in all life cycle stage
 Reduce weight, toxicity, and energy consumption
 Longer life time
 Easy to process and assemble
 Easy to transport and retain
 Easy to clean, maintenance, disassemble, and reuse
 Save to landfill or incinerate
 Etc.

Examples of driving forces for DfE
The need for increased product quality
 The need to improve the image of the product and
the company
 The need to reduce costs
 The need for innovative power
 The need to increase employee motivation
 Legislation
 Market demand
 Social environmental
 Competitors
 Raised energy costs and waste charges

Consumer Demands of Environmental
Sound Products
High
Moderate
Dawning
Chile, Brasilia,
Poland, Hungary,
Thailand etc.
USA, France,
Italy, Japan,
Great Britain etc.
Germany, Sweden,
Holland, Denmark,
Switzerland etc.
A DfE Tool: Lifecycle Design Strategies Wheel
7
0
New Concept Development
Dematerialisation
Shared use of the product
Integration of functions
Functional optimization of product (components)
Optimization of end-of-life system
Reuse of product
Remanufacturing/refurbishing
Recycling of materials
Clean incineration
6
Optimization of initial life-time
Reliability and durability
Esay maintenance and repair
Modular product structure
Classic design
User taking care of product
5
Reduction of the environmental
impact in the user stage
Low energy consumption
Clean energy source
Few consumables needed during use
Clean consumables during use
No energy/auxiliary material use
1
Selection of low-impact materials
Non-hazardous materials
Non-exhaustable materials
Low energy content materials
Recycled materials
Recyclable materials
-
4
Efficient distribution system
Less/clean packaging
Efficient transport mode
Efficient logistics
+
2
Reduction of material
Reduction in weight
Reduction in (transport) volume
3
Optimization of production techniques
Alternative production techniques
Fewer production processes
Low/clean energy consumption
Low generation of waste
Few/clean production consumables
Priorities for the new product
Existing product
Brezet, J. C. and al., e., 1994, PROMISE Handleiding voor Milieugerichte Produkt Ontwikkeling (PROMISE Manual for Environmentally Focused Product
Development), SDU Uitgeverij, The Hague, The Netherlands.
Hemel, C. G. v. and Keldmann, T., 1996, "Applying DFX Experiences in Design for Environment," Design for X: Concurrent Engineering Imperatives, Chapmann &
Hall, London, pp. 72-95.
เป้าหมาย 2 อย่าง ของ EcoDesign
Waste Prevention
ลด : น้าหนัก
ความเป็นพิษ
พลังงาน
ยืด : อายุการใช้งาน
Better Resource
Management
พยายามให้ง่ายต่อ:
Re-manufacturing
รีไซเคิล
การทาปุ๋ย/ ใช้
Energy recovering
LCA & DfE ในการออกแบบ
แนวคิดด้าน DfE
แนวคิดด้าน LCA
การออกแบบขัน้ ต้น
การออกแบบขัน้ ละเอียด
ทา complete LCA
ใช่
ใช้ simplified LCA
to perform screening
จาเป็นต้องทา complete
LCA
ไม่
ผลิตภัณฑ์ Prototype
ไม่
Guidelines for DfE
Concept of LCA
ได้ตามข้อกาหนด
ของผลิตภัณฑ์
ใช่
ผลิตภัณฑ์ขนั้ ส ุดท้าย
ขึ้นกับ ความสาคัญของผลิตภัณฑ์และ
ขนาดของผลกระทบสิ่งแวดล้อม และ
simplified LCA ไม่สามารถสนอง
ความต้องการได้
Introduction to Research Project
Objective
To study the design and improvement of an
electrical & electronic equipment by using
Economic and ecological design (or EcoDesign)
concept to make it comply with WEEE directive
Scope & boundary


Select only one product based on the
following criteria:
- Potential for value added
- Environmental impact
- Technical feasibility
Improvement analysis is based on the result
of LCA (studied by TEI)
Methodology
1. Literature review about EcoDesign and
WEEE Directive
2. Select one research-product (according to
the criteria specified)
3. Review existing product data
4. Design questionnaires and checklists for
product assessment
5. Score and evaluate existing product data
Methodology (Cont.)
6. Propose design options for improvement by using EcoDesign
concept and strategies as shown in the examples below.
– Consider cradle to grave (material, manufacturing,
transportation, use and disposal)
– Reduce weigh, toxicity and energy consumption
– Extend product life time
– Improve management system to facilitate many process such
as
 Manufacturing
 Disassembly
 Reuse and recycle
 Installation, maintenance and repair
 Standard requirement
7. Analyze and evaluate the result by comparing the economic and
ecological impacts of model(s) before and after the improvement
using LCA
8. Conclusion and Report
Product Selection
 Product
selected : Air Conditioner
 Split type: 12,000 BTU
 Criteria
–
–
–
–
Export Value
Environmental Impact
Future trend
The ability to change design
เกณฑ์ ในการคัดเลือก
ประเภท
ผลิตภัณฑ์
มูลค่าการ
ส่ งออกไป
EU
(ล้านบาท)
จานวน
(ล้านบาท) ผู้ส่งออก
ดุลการค้า
ผลกระทบ
ตลอดวงจรชีวติ
ความสามารถในการ
ปรับเปลีย่ นและการออกแบบ
ผลิตภัณฑ์ เพือ่ สิ่ งแวดล้ อม
1 เครื่องปรับ
11,173.40
8,753.00
72
กระบวนการพ่นสี การใช้
ทรัพยากร เหล็กและ
พลาสติก เป็ นต้ น การใช้
พลังงานไฟฟ้า
2 เครื่องรับ
4,740.70
2,534.08
60
มีส่วนประกอบหลายชิ้น มีความเป็ นไปได้ ในการปรับเปลีย่ น
ในอุปกรณ์ เช่ น
ได้ เนื่องจากมีการส่ งเสริมการผลิต
แผ่ นวงจรพิมพ์ ฝาหน้ าตู้ ชิ้นส่ วนหลักๆ ในประเทศมากชึ้น
โทรทัศน์ หลอดภาพ
ลาโพง เป็ นต้ น โลหะหนัก
ในหลอดภาพ การใช้
พลังงานไฟฟ้า
อากาศและ
ส่ วนประกอบ
โทรทัศน์
มีความเป็ นไปได้ ในการปรับเปลี่ยน
ได้ เนื่องจากชิ้นส่ วนส่ วนใหญ่ ผลิตได้
ในไทย เทคโนโลยีของการประกอบ
หรือการผลิตเครื่องปรับอากาศเป็ น
เทคโนโลยีที่ไม่ ซับซ้ อนมาก ผู้ผลิต
สามารถเรียนรู้และพัฒนาได้ เอง
Air Conditioner Model
 Model AU/AH-MP13
– Condensing Unit
– Fan Coil Unit
 Gross
weight 53 kg (40 kg +13 kg)
EcoDesign Checklist for Air Conditioner
Product : Air Conditioner
Producer : Sharp Appliances (Thailand) Co.,Ltd.
No.
Guideline
Yes
No
The Product Design Review
1
มีการทบทวนการออกแบบด้านเทคนิ ค โดยประกอบด้วยประเด็นใดประเด็นหนึ่ งดังนี้
• จานวนชิ้นส่ วน เวลาที่ใช้ในการถอดประกอบ จานวนสกรู จานวนข้อต่อ เป็ นต้น

• น้ าหนักของชิ้นส่ วนและองค์ประกอบเช่น น้ าหนักของบรรจุภณ
ั ฑ์ พลาสติก

อะลูมิเนี ยม เป็ นต้น
• การวัดปริ มาณการใช้พลังงาน

2
ผลิตภัณฑ์ (รวมทั้งบรรจุภณั ฑ์) มีการประเมินผลสิ่ งแวดล้อมทั้งวัฏจักรชีวิตในเชิงคุณภาพ

3
ผลิตภัณฑ์ (รวมทั้งบรรจุภณั ฑ์) มีการประเมินผลสิ่ งแวดล้อมทั้งวัฏจักรชีวิตในเชิงปริ มาณ

4
ผลิตภัณฑ์ที่ผลิตมีชิ้นส่ วนผลิตมาจากวัสดุรีไซเคิล (โลหะ พลาสติก บรรจุภณั ฑ์)
• 0% ของน้ าหนักทั้งหมด
• มากกว่า 0% แต่ไม่ถึง 20% ของน้ าหนักทั้งหมด
• มากกว่า 20% ของน้ าหนักทั้งหมด



Air Conditioner Assessment from Checklist
1. Product Design Review
5
4
8. End of Life
2. Materials Usage
3
2
1
7. Initial Lifetime
0
3. Low Impact Materials
Weak point
6. Impact During Use
4. Production Technique
5. Distributions
End of Life Options and Design Attributes
Remanufacture
Upgrade
Resale
Recycle
Scrap
ATTRIBUTES
1
Availability of spares and consumables. Important for second and subsequent
X
x
x
x
x
x
x
x
markets.Use of standard parts and consumables reduces servicing down-time
2
Cleanable to first market standards
Avoid grease & dust traps; make cosmetic surfaces scratch resistant
3
Design for second market
Must work with range of voltages and operating conditions
4
x
Durable, high value sub-assemblies. Design assemblies containing precious
x
x
x
x
x
x
metals, high tolerance components or ICs for re-use. Standardisation helps.
5
Durable skeleton and core technology
Materials hard wearing and long lasting
6
Easy access to replaceable parts.
7
Easy separation of contaminated materials. Confine contaminated or
x
Design sub-assemblies so they can be dismantled
easily without specialist tools. Minimise number of operations to replace these parts;
serviceable parts easily accessible
hazardous material to a section of the product so easy to identify and remove; avoid
such material where possible
x
x
x
Ref: Tom Clark, 1999
Design for Recycling Checklist
No
Checkpoint
A
Design for recycling materials and components
1











Y
N
N/A
Comments
Has the number of different materials been limited
where practicable?
Are all plastic parts greater than 50g marked to ISO
1043 and ISO 11469?
Have surface coating been avoided?
Has the product part count been reduced and by how
much?
Have pigmented plastics been avoided where aesthetics
are not a concern?
Have recycled plastics been used wherever practical?
Has the product been designed so that it can be
upgraded?
Can any value be obtained from the return of parts to
the supplier?
Are high value components grouped together on the
PCB?
Is there a disposal manual or information indicating
which parts are recyclable and how to process them?
Does the manual/information give special instructions
for disposal of hazardous material?
Ref: Tom Clark, 1999
Design for Recycling Checklist (cont.)
No
Checkpoint
B
Design for disassembly
2












Y
N
N/A
Comments
Are value parts easily accessible?
Have nuts and bolts been avoided?
Are moulded-in inserts made of compatible
materials?
If incompatible materials have been used, can
the inserts be easily broken off?
Can assemblies and components be removed
with a standard tool?
Have ‘break out’ points been designed into
mouldings?
Are all screws which are in contact with
mouldings easy to get at?
Have deep access holes for screws been avoided?
Have snap fits been used where possible?
Have common fasteners been used?
Have adhesives, labels, adhesive-backed foams
and paints been avoided?
Is there a dismantling manual or information?
Ref: Tom Clark, 1999
WEEE/RoHS Directive Checklist
Questions/issues
Y
N
N/A
Comments
ENVIRONMENTAL ISSUES/
CONCERNS
What are the main concerns relating to end-of-life
waste from the product eg
Hazardous materials
Recycled materials content
Materials recyclablity
DESIGN OBJECTIVES/ATTRIBUTES
Apply general eco-design checklist as appropriate
What are the main design objectives/ attributes
sought?
Design for
Longevity, including durability and secondary use
Source reduction (reduced mass)
Low toxicity (avoidance of hazardous substances
except in exempted quantities)
Material and/or component recovery
Separability of hazardous components or materials
Disassembly
Ref: Tom Clark, 1999
Design for Energy Saving Options
 Use
of a DC Twin Rotary Compressor Inverter
 Use of an AC Twin Rotary Compressor Inverter
 Use of a DC Fan Motor
 Using Evaporator Coil with Grooved Tube
Design for End of Life
 Lead
Free Solder
 Use of R410A
 Reduce Weight & Volume
 Use of Recyclable Materials
Case I: Design for Weight Reduction
Old Model
(2001)
Net wt. kg (In/Out)
Evaporator (slit fin)
Condenser (Grooved Tube)
Front Cabinet (outdoor)
EER
Dimension (Indoor)
17/45
2 Row, 24 lines
19 FPI
1 Row, 17 FPI
Steel
10.6
897x297x189 mm
Present Model
(2003)
12/38
2 Row, 15 lines
22 FPI
1 Row, 19 FPI
Plastic: PP
10.84
815x278x195 mm
Pt
2
1.91
1.5
1.13
1
0.5
0
Old Model_Assembly
Existing Model_Assembly
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Old Model_Assembly' with 1 p assembly 'Existing Model_Assembly'; Method: Eco-indicator 95 / Europe e / single score
Pt
200
160
157
Old Model_Use
Existing Model_Use
100
0
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Old Model_Use' with 1 p assembly 'Existing Model_Use'; Method: Eco-indicator 95 / Europe e / single score
LCA Comparison of Housing: Old model & Present model
mPt
900
831
800
700
600
500
437
400
300
200
100
19.9
11.3
Housing (Indoor) - Old
Model
Housing (Indoor) - Existing
Model
0
Housing (Outdoor) - Old
Model
Housing (Outdoor) Existing Model
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing product stages; Method: Eco-indicator 95 / Europe e / single score
LCA of Air Conditioner: Old & Present Model
Greenhouse
1.2
0.9
Summer smog
Ozone layer
0.6
0.3
Winter smog
0.0
Acidification
Carcinogens
Eutrophication
Heavy metals
Old Model A/C
Existing Model A/C
Case II: Use of a DC Fan Motor
Net wt. kg (In/Out)
Compressor type
Fan Motor
Energy saving (%)
Present Model
(2003)
12/38
Single Rotary
AC Fan Motor
-
New Model
12/38
Single Rotary
DC Fan Motor
10
LCA Comparison: Present Model & Use of a DC
Fan Motor
Pt
200
158
142
100
0
Use of a DC Fan Motor
Existing Model A/C
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Use of a DC Fan Motor' with 1 p assembly 'Existing Model A/C'; Method: Eco-indicator 95 / Europe e / single
Case III: Use of a AC Twin Rotary
Compressor Inverter
Net wt. kg (In/Out)
Compressor (kg)
Compressor type
Condenser fan coil (kg)
Condenser fan motor (kg)
Energy saving (%)
Present Model
(2003)
12/38
~15.1
Single Rotary
~4.9
~1.8
-
New Model
12/38
~11.1
AC Twin Rotary
~8.4
~2.8
30
LCA Comparison: Present Model & AC Twin
Rotary Compressor
Pt
200
158
111
100
0
Use of an AC Twin Rotary Compress
Existing Model A/C
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Use of an AC Twin Rotary Compress' with 1 p assembly 'Existing Model A/C'; Method: Eco-indicator 95 / Eur
Case IV: Use of a DC Twin Rotary
Compressor Inverter
Net wt. kg (In/Out)
Compressor (kg)
Compressor type
Condenser fan coil (kg)
Condenser fan motor (kg)
Energy saving (%)
Present Model
(2003)
12/38
~15.1
Single Rotary
~4.9
~1.8
-
New Model
12/38
~10.1
DC Twin Rotary
~8.4
~2.8
40-50
Pt
1.5
1.33
1.25
1.13
1
0.75
0.5
0.25
0
High Efficiency Inverter_Assembly
Existing Model_Assembly
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'High Efficiency Inverter_Assembly' with 1 p assembly 'Existing Model_Assembly'; Method: Eco-indicator 95 / Europe e / sing
Pt
200
157
100
78.4
0
High Efficiency Inverter_Use
Existing Model_Use
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'High Efficiency Inverter_Use' with 1 p assembly 'Existing Model_Use'; Method: Eco-indicator 95 / Europe e / single score
Case V: Use of R410A
Net wt. kg (In/Out)
Compressor type
Lubricant oil
Refrigerant
Ozone depletion
GWP
EER
Present Model
New Model
(2003)
12/38
12/38
Single Rotary
Single Rotary
Diamond MS 56
Polyolester oil
R22
R410A
0.05
0.0
1700
1890
10.84
10.6<EER<10.84
LCA Comparison: Present Model &
Use of R410A
Pt
200
157
157
100
1.2
0
R410A_Use
1.13
R410A_Assembly
Existing Model_Use
Existing Model_Assembly
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing product stages; Method: Eco-indicator 95 / Europe e / single score
LCA Comparison: R22 & R410A
mPt
30
27.4
20
12.8
10
0
Refrig R410A
Refrig R22
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Refrig R410A' with 1 p assembly 'Refrig R22'; Method: Eco-indicator 95 / Europe e / single score
Case VI: Use of a DC Twin Rotary
Compressor with R410A
Pt
200
158
100
79.7
71.9
0
Use of a DC Twin Rotary
Compressor with R410A
Use of a DC Twin Rotary
Compressor
Existing Model A/C
greenhouse
ozone layer
acidification
eutrophication
heavy metals
carcinogens
winter smog
summer smog
pesticides
energy resources
solid waste
Comparing 1 p assembly 'Use of a DC Twin Rotary Compressor with R410A' with 1 p assembly 'Use of a DC Twin Rotary Compressor' a
LCA Comparison: Old Model, Present
Model & Design options
Pt
200
162
158
158
142
111
100
71.9
79.7
0
Use of R410A
greenhouse
carcinogens
Use of a DC
Use of a DC
Use of an AC
Twin Rotary
Twin Rotary
Twin Rotary
Compressor
Compress
ozone layer Compressoracidification
winter smog
Use of a DC
Fan Motor
summer smog
solid waste
Comparing product stages; Method: Eco-indicator 95 / Europe e / single score
Old Model A/C Existing Model
A/C
eutrophication
heavy metals
pesticides
energy resources
Options for Improvement
Greenhouse
1.2
Summer smog
Ozone layer
0.8
0.4
Winter smog
0.0
Acidification
Carcinogens
Eutrophication
Heavy metals
Existing Model A/C
Use of an AC Twin Rotary Compressor
Use of R410A
Use of a DC Fan Motor
Use of a DC Twin Rotary Compressor
Use of a DC Twin Rotary Compressor with R410A
Case VII: Lead Free Solder
Eco Indicator 95 per 1 kg Solder
100
80
%
60
40
20
0
SnPb37
SnBi58
SnCu0.7
SnAg3.5
SnAg4Cu0.5 SnAg3.5Bi4.8
SnZn9
Eco Indicator of the Solder Alloy
Overview of environmentally relevant
solder properties
Alloy
SnPb
e.g. SnPb37
TPI Screening
(Toxic Potential
Indicator)
100%
Acute Toxicity
Ecotoxicity
Pb: High toxic;
Pb: Accumulates;
leratogenic
highly toxic to
Mutagenic?
many organism
Metal
Production
100%
Cancerogenic?
SnAg
e.g. SnAg3.5
Manufacturing
Material
Recycling
Capability
Disposal
(TCLP leaching test)
Optimized process;
SnPb solder retrieval
Pb leaching
no vaporized metals
at secondary
40 ppm Pb
under operating
Cu smelters
in leachate
Up to 10% Sn
<0.1 ppm Ag
tolerated at
in leachate
conditions
Ag: Toxic to
29%
Ag: Argyria
microoorganisms but
7%
High energy demand
low bio-availability
SnAgCu
e.g. SnAg4Cu0.5
Precious Metal Refining
Ag: Toxic to
32%
Up to 50% Cu
tolerated at PMR;
?
low bio-availability
only 1% Ag at
Cu leaching?
Cu: Low toxicity
Cu: Toxic to
Up to 10% Sn
?
to mammals
aquatic life
tolerated at
Cu leaching?
Ag: Argyria
microoorganisms but
8%
High energy demand
Cu smelting
SnCu
e.g. SnCu0.7
14%
2%
High energy demand
but low content
SnBi
e.g. SnBi58
?
Bi: Low er toxicity
?
6%
than Pb
Low er bio-avialab.
(Bi not evaluated yet!)
SnAgBi
e.g. SnAg3.5Bi4.8
62%
?
Bi not w anted
Process not yet
by Cu smelters
evaluated in detail
than Pb
?
29%
Cu smelting
Bi leaching
3.9 ppm Bi
in leachate
Ag: Toxic to
Ag: Argyria
(Bi not evaluated yet!)
microoorganisms;
12%
low bio-availability
Low er energy demand
Bi not w anted
Bi leaching
than SnAg
by Cu smelters
expected
Use of agressive flux;
Only up to 1% Zn
?
cleaning required
tolerated at PMR
Zn leaching?
Bi: Low content
SnZn
e.g. SnZn9
14%
Zn: low toxicity;
Zn: Toxic to certain
no lethal intoxications
plants and aquatic
reported
organisms
1%
and Cu smelting
ref.: H. Griese and alt. Environmental Assessment of Lead Free
Interconnection systems Proc. Symp., June 13-14, 2000.
Conclusions
 EcoDesign
must enter the design
process at the outset
 EcoDesign must consider entire product
life cycle
 LCA & EcoDesign can be used to
improve the design
 Benchmarking is necessary to compare
alternatives or evaluate progress
Acknowledgement


Department of Foreign Trade
Sharp Appliances (Thailand) Ltd.
ขอบคุณครับ
THANK YOU
FOR YOUR KIND
ATTENTION