Analysis of discontinuities in the meshless Natural
Download
Report
Transcript Analysis of discontinuities in the meshless Natural
Réduction de Modèles à l’Issue de la
Théorie Cinétique
Francisco CHINESTA
LMSP – ENSAM Paris
Amine AMMAR
Laboratoire de Rhéologie, INPG
Grenoble
R
q1
The different scales
q2
Atomistic
r1
r2
Brownian dynamics
Kinetic theory:
x, y , z , t
• Fokker-Planck
rN+1
qN
• Stochastic
Atomistic
The 3 constitutive blocks:
U ( x, y, z, t, x1 (t ),
, x N (t ))
F i F i GradU i
F i mi Ai Ai vi xi
i
q1
q2
Brownian dynamics
r1
r2
rN+1
Beads equilibrium
qN
usually modeled from a random motion
q1
r1
q2
Kinetic theory:
• Fokker-Planck
r2
•
Stochastic
ψ( x, y, z, t, q1,, qN )
(3 1 3N ) D
rN+1
qN
The Fokker-Planck formalism
1
(q )
A
t
q
4 q q
Coming back to the macroscopic scale:
Stress evaluation
q
F
q
FF( q) q F ( q) q ( q) d q
C
With F & R collinear:
T
Solving the deterministic
Fokker-Planck equation
Two new model
reduction approaches
Model Reduction based on the
Karhunen-Loève decomposition
Continuous:
Discretization:
PDE , u x , t
u( xi , t ) i 1,
p
, N , p 1,
AU F
p
1
Karhunen-Loève: U ,
, P U
p
p 1
n
,U i i n N
P
i 1
Application in Computational
Rheology
Fokker-Planck discretisation
M K
p
M
p 1
M
p
10
0
2 p
p
(0) p
First assumption: B
0
N
B
1 dof !
(0)
T
M B B
(0)
p
(0)
T
p 1
Initial reduced
approximation
basis
B p1
(0)
Fast simulation BUT bad results expected
Enrichment based on the use of the Krylov’s
subspaces: an “a priori” strategy
B
(0)
B
B T M B p B T B
p 1
tcontrol
B B
*
B B, KS1, KS 2, KS 3
*
R M B B
p
IF R
KSm M
p 1
IF R continue
m 1
R
The enrichment increases the number of approximation
functions BUT the Karhunen-Loève decomposition reduces it
FENE
Model
1D
q
3D
1
H(q)
q2
1 2
b
H(q)
H( q )
1
1
q
2
b2
300.000 FEM dof
~10 dof
~10 functions (1D, 2D or 3D)
It is time for dreaming!
q1
r1
q2
1
( q.)
A
t
q
4 q q
r2
(q1 , q2 ,, q N , x, y, z, t )
rN+1
qN
For N springs, the model is defined
in a 3N+3+1 dimensional space !!
~ 10 approximation functions are
p
p1
enough M
~1010
~101
~101
BUT
~10
( x1, x2 , , x3N 3 , t ) i (t ) i ( x1, x2 , , x3N 3 )
i 1
How defining those
high-dimensional functions ?
Natural answer: with a nodal description
10 nodes = 10 function values
1D
q1
1D
q2
10 dof
10x10 dof
2D
80D
r1
r2
1080 dof
rN+1
1080 ~ presumed number of
elemental particles in the universe !!
qN
>1000D
No function can be defined in a such space from
a computational point of view !!
F.E.M.
Advanced deterministic approaches of
Multidimensional Fokker-Planck equation
Separated representation and Tensor product
approximation bases
q1
q2
DIM 9 1
q9
Our proposal
FEM
( q1,
GRID
DOF N DIM 100010 1030
n
, q9 , t ) j Fj1 ( q1 )
j 1
Fj 9 ( q9 ) Fj10 (t )
DOF N DIM 1000 10 104
Computing availability ~109
Example
T f ( x, y ) in L, L x L, L
T ( x ) 0
T ( x, y) j Fj ( x)G j ( y)
h m
f ( x, y ) ah ( x )bh ( y )
h 1
j 1
n
T ( x, y ) j Fj ( x )G j ( y )
j 1
I - Projection:
T
x dN T F 1 M T G
1
T
T N F 1 dM T G1
y
N
T
F
(
x
)
N
(
x
)
F
(
x
)
N
Fi
k
i
k
i
k 1
M
G ( y ) M ( y )G ( y ) M T G
i
k
i
k
i
k 1
T T * d f ( x, y ) T *d
T
T
dN F 2 M G 2
T
T
N F 2 dM G 2
1
T
T
... dN F n M G n 2
.
T
T
... N F n dM G n
n
j Tn
II - Enrichment:
n
T ( x, y ) j Fj ( x )G j ( y )
j 1
N
T
Fi ( x ) N k ( x ) Fi ( xk ) N F i
k 1
M
G ( y ) M ( y )G ( y ) M T G
i
k
i
k
i
k 1
T ( x, y ) j F j ( x )G j ( y ) R( x ) S ( y )
j 1
T * R*S RS*
n
T T * d f ( x, y ) T *d
T
x n
dN T F j .M T G j M T S . dN T
j T
T
T
j 1 N F j .dM G j 0(1, p )
y
R
T
T
N R . dM S
0(1,q )
Only 1D interpolations and 1D integrations!
R
Fn 1
R
Gn 1
S
S
q1
q2
1D/9D
q1
q2
809 ~ 1016 FEM dof
2D/10D
1040 FEM dof
q9
80x9 RM dof
100.000 RM dof
Solving the Stochastic
representation of the
Fokker-Planck equation
New efficient solvers
Stochastic approaches …
(Ottinger & Laso)
A way for solving the Fokker-Planck equation:
d
A
D
dt q
q
q
D BB
T
jN
( q, t 0) j ( q q j )
0
j 1
dq A dt B dW
W : Wiener random process
We need tracking a large ensemble of particles
and control the statistical noise!
Fokker-Planck:
d ( x, , t )
dt
d
( x, , t )
dt
( x, , t )
Dr
x , ,t
Stochastique:
W
d
i
i
di t Wi
t
t
dt
BCF
W N (0, 2 Dr t )
Brownian
Configuration
Jeffery
Fields
i
1
N BCF
N BCF
i 1
i
SFS in a simple shear flow
Rouge: MDF
1000 ddl / pdt
a11
Bleu: BCF
100 BCF
1000 ddl / pdt
Vert: Reduced BCF
100 BCF
t
4 ddl / pdt
The reduced approximation basis is constructed from some
snapshots computed on the averaged BFC distributions
Perspectives
(réduction de deuxième génération)
d i
i
dt
1
N BCF
N BCF
i 1
i
Wi
t
f (t )
Séparation de variables ?
Base commune pour les différents « configuration fields »?