Nessun titolo diapositiva

Download Report

Transcript Nessun titolo diapositiva

New (iterative) methods
for solving
the nuclear eigenvalue problem
Pisa 05
An importance sampling
algorithm for large scale
shell model calculations
F. Andreozzi
N. Lo Iudice
A. Porrino.
Currently adopted methods
• Stochastic methodology: Monte Carlo (C.W.
Johnson et al. PRL 92), suitable for ground state.
Minus sign problem.
• Direct Diagonalization: Lanczos (see G.H. Golub
and C.F. Van Loan Matrix Computations 96).
Critical point: Sizes of the matrix.
• In between: Quantum MC (M. Honma et al. PRL
95). MC to select the relevant basis states.
Problems: Redundancy, symmetries broken by the
stochastic procedure.
Diagonalization algorithm
• (A. Andreozzi, A. Porrino, and N.Lo Iudice J. Phys. A 02)
Iterative generation of an eigenspace
• A  Symmetric matrix representing a selfadjoint operator in an orthonormal basis
{ | 1 > , | 2 > , … , | N> }
• A  { aij } = { < i | Â | j > }
• Lowest eigenvalue and eigenvector
a11 a12 a13 a14 …….. a1N
a21 a22 a23 a24 …….. a2N
a31 a32 a33 a34 …….. a3N
a41 a42 a43 a44 …….. a4N
………………………..
aN1 ………………….. aNN
λ1 = a11
basis {
| φ1 > = |1 >
|1 >, |2 > }
Diagonalize the matrix
λ2 ,
a11 a12
a21 a22
| φ2 > = k1(2) |1 > + k2(2) |2 >
Updated basis { | φ2 >, | 3 > }
Compute
b3 = < φ2| Â | 3 >
= k1(2) a13 + k2(2) a23
Diagonalize the matrix
λ3 ,
| φ3 > =
Σ
λ2 b3
b3 a33
ki(3) | i >
i = 1, 3
Updated basis { | φN-1 >, | N > }
Compute bN = < φN-1| Â | N >
Diagonalize the matrix
λN  E(1) , |φN > = | (1) > =
λN-1 bN
bN aNN

ki(N) | i >
i = 1, N
End first iteration loop
First step of the second iteration
Def.
|φ 1(2) > = | ψ(1) >
λ1(2) = E(1)
Compute b1 = < φ1(2) | Â | 1 >
the states { | φ1(2) >, |1> } are not linearly independent
Generalized eigenvalue problem
det
(
λ1(2) b1
b1
a11
-λ
1
< φ1(2) |1 >
< φ1(2) |1 >
1
) =0
E(1) , (1)
E(2) , (2)
……
THEOREM
If the sequence E(i) converges , then
E(i)
(i)
E (eigenvalue of the matrix A)
 (eigenvector of the matrix A)
Simultaneous determination of v eigensolutions
The structure of the algorithm
unchanged
λj-1
bj
bj
ajj
Λh
Bh
BhT
Ã
λ1 0 …. 0 b11 ...…. b1j
0 λ2 …. 0 b21 …… b2j
……….
…….
0 0 ….. λv bv1 ……. bvj
b11 ...…. bv1 a11 …….. a1j
b12 …… bv2 a21 …….. a2j
…….
……
b1j ……. bvj aj1 ..….. ajj
c
• Easy implementation
• Variational foundation
• Robust
Convergence to the extremal eigenvalues
Numerically stable and ghost-free solutions
Orthogonality of the computed eigenvectors
• Fast : O( N2) operations
IMPORTANCE SAMPLING
|Ψ> =
Σ
ci | i >
i = 1,N
localization property 
only m ( « N ) ci important
•diagonalization algorithm gives quite
accurate solutions already in the first
approximation loop
Sampling procedure
(F. Andreozzi, N. L. A. Porrino, J. Phys. G 03)
given ε
{aij}

Λ v = diag (λi)
(i,j = 1, …, v)
for j = v+1 , N
• diagonalize Aj =
Λv
bj
bjT
ajj
bj = {b1j , … , bvj}
• select the v lowest eigenvalues
λ1’ , … , λv’
if Σ i = 1,v | λi’ - λi | > ε accept the j –th
state
end loop
•
requires  N  ( v + 1)3 operations
Importance sampling reduces by a factor
N / Nsampled the number of operations
• The effectiveness of the reduction depends on the
localization properties of the wave function
• Increase of the localization through the use of a
correlated basis  model space partitioning
Numerical Applications
• Semimagic nuclei:
108Sn
• N=Z
48Cr
• N> Z
133Xe
108Sn
1h11/2
3s1/2
2d3/2
1g7/2
2d5/2
Realistic effective interaction deduced from Bonn A
potential .
J π = 2+
N = 17467
scaling with n (number of sampled states)
λ (n) = a + b (N/n) exp(-c N/n)
ε (n) = (d/n2) exp(-c N/n)
• it allows for high precision extrapolation
nN
Heuristic argument
• consistency
ε(n)  dλ / dn
• from the sampling condition (one target state)
Δλ = Σj Δλj = Σj bj2 / ( ajj - λ)
In the convergence region
•
ajj -   ann -   n
•
bj2 = <j-1 |H| j>2 (j-1 = i ci |i>)
small and random for j < n
zero
for j> n
bj2  exp (- j/n)
•
•
Δλ  b (N/n) exp(-c N/n)
ε(n)  dλ / dn
 (d/n2) exp(-c N/n)
Conclusions
• The algorithm is simple, robust and has a
variational foundation
• Once endowed with the importance sampling,
a) it keeps the extent of space truncation under strict
control
b) it allows for extrapolation to exact eigensolutions
• It is very promising for heavy nuclei
• It may be applied to systems others than nuclei
(molecules, metal clusters, quantum dots etc.)
Nuclear Eigenvalue problem in a
microscopic multiphonon space
Iterative equation of motion method
Naples(Andreozzi, Lo Iudice, Porrino)
Prague (Knapp, Kvasil)
collaboration
Preliminary remarks
• Standard Shell model is exact and complete within a given model
space.
• Often the model space is spanned by ΔN = 0 –ħω
Thus it does not include the high-energy configurations building up the
collective states.
• TDA or RPA act in a more restricted but more selective space (p-h or
2qp configurations up to n ħω) and therefore are in general more
suitable for collective excitations. They, however, do not account for
anharmonic effects.
• A multiphonon space is needed for describing anharmonicity
• Problem with multiphonon space:
Antisymmetry
Proposed way out: Equation of motion method
Redundancy
Eigenvalue problem: Formulation
Goal: Solving
H | α > = Eα | α >
in a multiphonon space spanned by
| 0 >, |1, {ν1} >, |2, {ν2} >, ……. |n, {νn }>…
where
|n, {νn }> = | ν1 ν2 …..νn >
| νi > = Σph C ph(νi ) B+ph |0>
= Σph Cph(νi ) a+p ah |0>
< n; νn | [H, B+ph] | n-1; νn-1 > =
Σν ’ < n; νn | H | n; ν’ > < n; ν’ | B+ph | n-1; νn-1 > Σν ’ < n; νn | B+ph | n-1; ν’ > < n-1; ν’ | H | n-1; νn-1 >
 < n; νn | H | n; ν’ > = Eνn δνnν’
 < n-1; ν’ | H | n-1; νn-1 > = Eνn-1 δνn-1ν’
Amplitude
< n; νn | [H, B+ph] | n-1; νn-1 > =
(Eνn - Eνn-1) < n; νn | B+ph| n-1; νn-1 >.
The commutator yields:
+
< n; νn | [H, B
ph]
| n-1; νn-1 > =
Amplitudes
(εp- εh) < n; νn | B+ph | n-1; νn-1 > +
+ 12 [Σp’h’ Gp’ h h’ p < n; νn | B+ph’| n-1; νn-1 >
+
Σ Gp’p’’p’’’p < n; νn | B+p’h B+p’’p’’’ | n-1; νn-1 >
+ Σ Gp’h’h’’p
+
Σ Gp’h p’’h’
< n; νn | B+p’h B+h’h’’) | n-1; νn-1 >
< n; νn | B+ph’ B+p’p’’ | n-1; νn-1 > )
+ Σ Ghh’h’’h’’’ < n; νn | B+ph’ B+h’’h’’’) | n-1; νn-1 > ]
Linearization
Amplitudes
< n; νn | B+p’h’ B+p’’p’’’ | n-1; νn-1 >
< n; νn | B+p’h’ | n-1; ν’> ∙
· < n-1; ν’|B+p’’p’’’ | n-1; νn-1 >
Î = Σ ν’ |n-1; ν’ >< n-1; ν’|
< n; νn | B+p’h’ B+h’’h’’’) | n-1; νn-1 >
< n; νn | B+p’h’ | n-1; ν’> ∙
+
·
<
n-1;
ν’|B
h’’h’’’ | n-1; νn-1 >
Î = Σ ν’ |n-1; ν’ >< n-1; ν’|
Eigenvalue Equation
М(n) X
(n)
= Eνn X
(n)
Where
X(n)νn-1
ph
= < n; {νn} | B+ph| n-1; {νn-1} >
(М(n))ph,p’h’(νn-1ν’n-1) =
+
-
A ph,p’h’δνn-1ν’n-1
Hpp’(νn-1ν’n-1)δhh’
Hhh’(νn-1ν’n-1)δpp’
Aph,p’h’ = (ep – eh + Eνn-1) δph,p’h’ - Gphp’h’
Hpp’(νn-1ν’n-1)
Hhh’(νn-1ν’n-1)
-
=
½
=
½
Σh1h2
Σp 1 p 2
Σp1p2
Σh 1 h 2
Gph1p’h2 R
Gp’p1p2p R
Ghp1h’p2 R
Gh’h1h2h R
(νn-1ν’n-1)
p1p2 (νn-1ν’n-1)
p1p2 (νn-1ν’n-1)
h1h2 (νn-1ν’n-1)
h1h2
Rab(ν’n-1νn-1) = < n-1; {ν’n-1} | B+ab| n-1; {νn-1} >
Redundancy
• The states
+
B ph| n-1; {νn-1} >
form an overcomplete linearly
dependent set.
Is there a way out? Yes
• Let us perform the expansion in the redundant basis
+
|n; {νn}> = Σ νn-1ph Cph (νn νn-1) B
ph|
n-1;{νn-1} >
We obtain
X
(n)
+
= < n; {νn} | B ph| n-1; {νn-1} >
= Σ ν’n-1p’h’ Cp’h’(νn ν’n-1) Dphp’h’(νn-1 ν’n-1)
where
νn-1 ph
Dp’h’ph (νn-1 ν’n-1) =
+
< n-1; {ν’n-1} | B p’h’ B ph| n-1; {νn-1} >
In matrix form
X = D C
Therefore
М X = E X
(МD)C = H C = E DC
This Eq. is ill defined with respect to
inversion (D is singular)
•
The way out: Choleski method
Choleski selects a basis of linear independent states
B+ph| n-1; {νn-1} >
spanning the physical subspace of the
right dimension
Ng < N
Using this basis, we compute a non singular
matrix Ď and get
(Ď-1МD)C = EC
Eq.
(Ď-1МD)C = E C
yields Ng exact eigensolutions for the
n-phonon subspace.
We can now move to the (n+1)-phonon
subspace.
We only need to know X(n) and R(n).
X(n) is given by
X= D C
(n)
R is given by the recursive relations
Rpp’(ν’nνn) = < n; {ν’n} | B+pp’| n; {νn} >
(ν’n)
=Σ ν’n-1h Cp’h (νn ν’n-1) X
ν’n-1 ph +
Σ νn-1ν’n-1p1h Cph (νn νn-1) X(ν’n)ν’n-1 p1h
Rpp’(ν’n-1νn-1)
Rhh’(ν’nνn) =
(ν’n)
Σ ν’n-1p Cph’ (νn ν’n-1) X
ν’n-1 ph’ +
(ν’n)
Σ νn-1ν’n-1ph1 Cph1 (νn νn-1) X
ν’n-1 ph1
Rhh’(ν’n-1νn-1)
Outcome of iteration:
the Hamiltonian matrix
Eν0 { H ν0 ν1 }
{ H ν0 ν2
} { 0 } {0}
Eν1 0 ………. . .0 { H ν1 ν2 } {H ν1 ν3 } {0}
Eν’10……….0 {
H ν’1 ν2 } {H ν’1 ν3 } {0}
E ν’’1 0….0 { H ν’’1 ν2 } {H ν’’1 ν3} {0}
…………………………………..
Eν2 0……….. 0 {H ν2 ν3} {H ν2 ν4}
Eν’2 0........ 0 {H ν’2 ν3}{H ν’2 ν4}
Eν’’2 0..0 {H ν’’2 ν3}{H ν’2 ν4}
……........................
Eν3 0 ..0 {H ν3 ν4}
……………
The off diagonal terms
are also computed by iteration
(νn)
< n-1; {νn-1} | H| n; {νn} > = Σ (ph)k C (ph)k
+
[< n-1; {νn-1} | [H, B (ph)k ] | n-1; {νn-1}k > + Σ l
X(ph)l (νn-1 νn-2) < n-2; {νn-1}l | H| n-1; {νn}k > ]
(νn)
(ph)k C
(ph)k
< n-2; {νn-2} | H| n; {νn} > = Σ
[< n-2; {νn-2} | [H, B+(ph)k ] | n-1; {νn-1}k > +
X(ph)l (νn-2 νn-3) < n-3; {νn-3}l | H| n-1; {νn-1}k > ]
The Hamiltonian matrix
Eν0 { H ν0 ν1 }
{ H ν0 ν2 } { 0
} {0}
Eν1 0 ………. . .0 {
H ν1 ν2 } {H ν1 ν3 } {0}
Eν’10……….0 {
H ν’1 ν2 } {H ν’1 ν3 } {0}
E ν’’1 0….0 { H ν’’1 ν2 } {H ν’’1 ν3} {0}
…………………………………..
Eν2 0……….. 0 {H ν2 ν3} {H ν2 ν4}
Eν’2 0........ 0 {H ν’2 ν3}{H ν’2 ν4}
Eν’’2 0..0 {H ν’’2 ν3}{H ν’2 ν4}
……........................
Eν3 0 ..0 {H ν3 ν4}
……………
Properties of H
• It is composed of central diagonal blocks
• Each block corresponds to a given nphonon subspace
• A given n-block is coupled only to (n1)and (n2)-blocks
Partitioning
Importance sampling
Severe truncation
Status of art: Program tests
successfully completed
A = 16
Phonon space
p-configurations  {d}
-1
h-configurations  {s p}
Hamiltonian : BonnA
Choleski effect
π
+
J =0 T=1
Two-phonon space
122
26
Three phonon space
3142
329
Choleski effect
π
J =3 T=1
Two-phonon space
252
62
Three phonon space
14956
1438
Future program
Immediate applications
• Coupled scheme p-h.
Detailed study of
• anharmonic effects on giant resonances
• Peculiar collective modes:
i. ISGDR (squeezed mode), which requires up to
3ħω p-h configurations
ii. Twist mode (orbital M2 mode)
iii. Double GDR
Future program
• In parallel
Eq. of M. in uncoupled (spherical and
deformed) scheme
• From p-h to qp to treat open shell nuclei as
a cheap alternative to large scale shell
model
More ambitious goal
• Combine SM (iterative algorithm) with Eq.
of M. to enlarge the SM space and study i.e.
intruders
• It si possible since the Eq. of M. formalism
holds for any vacuum state.
• It can actually be used as alternative to SM
in several cases (closed subshells)
• In many cases the information of interest is
restricted to a few (usually low-lying) states whose
accurate description presumably requires only a
limited subset of the basis states
• Identification of the relevant components implies the
knowledge of the wave function
 Adaptive diagonalization algorithm
Bh = { <φi(h-1) | Â | j > }
i = 1, …, v
j = 1, …, p
à is a principal submatrix of A:
Ã
=
an+1,n+1 an+1,n+2
….
an+1,n+p
an+2,n+1 an+2,n+2
….
….
an+p,n+1 an+p,n+2
….
….
….
an+2,n+p
….
an+p,n+p
• a more efficient way through the similarity
transform
A’ = Ω -1 A Ω
Ω =
Iv
0
ω
1
ω v-dimensional row vector
transformed matrix A’ =
Λv+bj  ω
wj
bj
ajj - ω ·bj
wj = - (ω · bj) ω - ω Λv + ajj ω + bjT
• decoupling condition
wj = 0
 ajj - ω · bj eigenvalue of A
Decoupling condition can be recast in form of a
dispersion relation
ω ·bj = -

Σi=1,v
bij2 / (ajj-λi - ω ·bj)
(ω ·bj)min  λ’max
interlacing property of the eigenvalues 
Σ i = 1,v | λi’ - λi | = (ω ·bj)min > ε
• Choleski decomposition
Any real non singular symmetric matrix can
be written as
D = L LT
Where L {lij} is a lower triangular matrix
T
and L its transpose
2
Det{D} = (Det{L})
2
2
= l11 l22
2
...lii …..
The elements of L are recursively defined as
l211 = d11
l11 lj1 = dj1
l ii = dii –
2
j=2,….,n
2
Σk=1,i-1 l ik
lii lji = dji – Σk=1,i-1 lik ljk
The decomposition goes on until
lrr = 0
Det{L} =0
| λr >
Det{D} =0
is linearly dependent
and is to be discarded
• Ordering
A linearly independent basis may yield an
overlap matrix ill defined with respect to
inversion.
To avoid this we arrange the basis in
decreasing order
λii ≥ λjj  j > I
This is automatically achieved
if we choose at each step
the vector yielding the maximum value of
dii – Σk=1,i-1 l2ik
dii – Σk=1,i-1 l2ik ≥ djj – Σk=1,j-1 l2jk
λii ≥ λjj
j>i
j>i
• decompose accordingly the Hamiltonian
H = H1 + H2 + H12
solve the eigenvalue equations
Hi |αi Ni> = Eαi |αi Ni >
replace the standard shell model basis with
| α N > = | α1 N1 α2 N2 >

Orthonormal correlated basis