The Perturbative Chiral Quark Model - uni

Download Report

Transcript The Perturbative Chiral Quark Model - uni

Description of Hadrons in
the Tuebingen Chiral
Quark Model
Amand Faessler
University of Tuebingen
Gutsche, Lyubovitskij,
Yupeng Yan, Dong, Shen
+ PhD students: Kuckei,
Chedket, Pumsa-ard,
Kosongthonkee,
Giacosa, Nicmorus
1
The Perturbative Chiral
Quark Model
Quantum Chromodynamic (QCD)
with:
(Approximate) Symmetries:
(1)
P, C, T (exact)
(2)
Global Gauge Invariance:
(exact)
for each flavor f
2
The Perturbative Chiral
Quark Model
Conservation of the No quarks of flavor f:
baryon number
electric charge
Third component of Isospin
Strangeness
Charme …
(3) Approximate Flavor Sym.
all the same
u, d / SU(2) Isospin
(4) Approximate Chiral Sym.
4
The Perturbative Chiral
Quark Model
(Effective Lagrangian)
Chiral Perturbation
Theory (cPT):
Gluons eliminated
Quarks eliminated
Perturbative Chiral Quark
Model (PχQM)
Gluons eliminated
With Quarks
6
Chiral Invariant
Lagrangian for the
Quarks SU(2 or 3) Flavor
8
The Perturbative Chiral
Quark Model
(2) Non-Linear σ-Model:
SU(2):
invariant since:
Invariant Lagrangian:
with Scalar- and Vector-Potential.
11
The Perturbative Chiral
Quark Model
with:
SU2:
SU3:
12
The Perturbative Chiral
Quark Model
Seagull Term
13
The Perturbative Chiral
Quark Model
Current Algebra Relations
Gell-Mann-Oaks-Renner relat.:
Gell-Mann-Okubo relation:
with:
14
The Perturbative Chiral
Quark Model
NUCLEON Wave Functions and Parameters:
Quark Wave Function:
Potential:
15
The Perturbative Chiral
Quark Model
16
The Perturbative Chiral
Quark Model
The PION-NUCLEON Sigma Term:
Gutsche, Lyubovitskij, Faessler; P. R. D63 (2001) 054026
PION-NUCLEON Scattering:
time
Weinberg-Tomozawa
17
The Perturbative Chiral
Quark Model
QCD:
Proton
18
Pion (Kaon, Eta)Nucleon Sigma-Term
20
Pion-Nucleon Sigma
Term in the Perturbative
Chiral Quark Model
3q p
K
13 39
2.1 0.1
55
45(8)
1
.3
14
15(.4)
12
h
.02
Tot. cPT
.1 1.4 .04 .002 1.5 1.6
85 256 40
4.5
386 395
28 0
4.5 0
33
4
69
96
13
9.4
21
Scalar Formfactor of
the Nucleon and the
Meson Cloud
22
The Perturbative Chiral
Quark Model
Electromagnetic Properties of Baryons:
+ counter terms
Tuebingen group: Phys. Rev. C68, 015205(2003);
Phys. Rev. C69, 035207(2004) ….
23
Magnetic Moments and
Electric and Magnetic Radii
of Protons and Neutrons
[in units of Nulear Magnetons and fm²]
3q
loops Total
Exp.
1.8
0.80
2.79
2.60
-1.2 -0.78 -1.98 -1.91
0.60 0.12
0.72
0.76
0
-.111
-.111
-.116
0.37 0.37
0.74
0.74
0.33 0.61
1.89
1.61
24
Helicity Amplitudes for N
– D Transition at the
Photon Point Q² = 0
A(1/2 )
A(3/2)
3quarks -78.3
-135.6
Loops
(ground q)
Loops
(excited)
-32.2
-55.7
-19.6
-33.9
Total
-130 (3.4)
-225 (6)
Exp[10**(-3)
GeV**(-1/2)
-135 (6) -255 (8)
25
Strangeness in the
Perturbative Chiral Quark
Model
Proton
28
Strange Magnetic Moment
and Electric and Magnetic
Strange Mean Square Radii
Approach
QCD
Leinweber I
-0.16
(0.18)
QCD
Leinweber II
-0.051
(0.021)
QCD
Dong
-0.36
(0.20)
-0,16
(0.20)
CHPT
Meissner
0.18
(0.34)
0.05
(0.09)
NJL Weigel
0.10
(0.15)
-0,15
(0.05)
CHQSM
Goeke
0.115
-0.095
CQM Riska
-0.046
PCHQM
-0.048 -0.011 0.024
(0.012) (0.003) (.003)
-0.14
0.073
~0.02
29
Strangeness in the nucleon
E. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289
F. E. Maas et al. Phys. Rev. Lett. 94 (2005) 152001
30
Strangeness
in the Nucleon
E. J. Beise et al. Prog. Part. Nucl. Phys. 54(2005)289 §
F. E. Maas et al. Phys. Rev. Lett. 94 (2005) 152001*
Approach
Gs(0.1)
Q²[GeV²/c²] SAMP §
Gs(0.48) Gs(0.23)
HAPP § Mainz*
cPT
Meissner
0.023 fit
(0.048)
0.023
(0.44)
0.007
(0.127)
Skyrme 0.09
Goeke
0.087
0.14
(0.016) (0.03)
Riska
-0.06
-0.08
PcQM
-0.04
(0.01)
0.0018 0.00029
(.0003) (.00005)
EXP
0.23 §
(0.76)
.025 §
(.034)
*
32
Compton Scattering
g + N -> g´+ N´
and electric a and magnetic b
Polarizabilities of the Nucleon.
Exp: Schumacher Prog. Part. Nucl. Phys. to be pub.55(2005)
33
Compton Scattering
Diagrams for electric a and
magnetic b Polarizabilities
35
Compton Scattering
diagrams for Spin
Polarizabilities g
36
Electric a and Magnetic b
Polarizabilities of the
Nucleon [10**(-4) fm^3]
DATA
10**(-4)
fm^3
a(p,E)
b(p,M) a(n,E)
b(n,M)
12.0
(0.6)
1.9
(0.6)
12.5
(1.7)
2.7
(1.8)
-2.3
11.0
-2.0
3.5
(3.6)
1.26
13.6
(1.5)
12.6
7.8
(3.6)
1.26
-1.8
9.8
-0.9
5.1
10.9
1.15
Schumacher
CHPT 7.9
Meissner
CHPT 10.5
Babusci
(2.0)
CHPT 12.6
Hemmert
CHPT 7.3
Lvov
PCQM 10.9
Tuebingen
37
The Perturbative Chiral
Quark Model
SUMMARY
Theory of Strong Interaction:
Effective Lagrangian with correct chiral
Symmetry without Gluons with Quarks
Perturbative Chiral Quark Model
39
The Perturbative Chiral
Quark Model
(Effective Lagrangian)
Chiral Perturbation Theory:
Gluons eliminated
Quarks eliminated
Perturbative Chiral Quark
Model (PχQM)
Gluons eliminated
With Quarks
40
Chiral Invariant
Lagrangian for the
Quarks SU(2 or 3) Flavor
41
The Perturbative Chiral
Quark Model
(2) Non-Linear σ-Model:
SU(2):
invariant since:
Invariant Lagrangian:
with Scalar- and Vector-Potential.
42
The Perturbative Chiral
Quark Model
Current Algebra
With:
43
The Perturbative
Chiral Quark Model
Two Parameters only: <r²>, g(A)
Radii and Magnetic Moments of p, n
Electric and Magnetic p,n Form
factors
Strangeness in N
π-Nucleon-σ Term
Electric and Magnetic Polarizabilities
of the Nucleon
The End
48